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Phasor Extremum Seeking Control with Adaptive Perturbation Amplitude

Khalid Tourkey Atta?, Roland Hostettler†, Wolfgang Birk?, and Andreas Johansson?

Abstract— In this paper, we propose a perturbation ampli-
tude adaption scheme for phasor extremum seeking control
based on the plant’s estimated gradient. By using phasor
extremum seeking instead of classical extremum seeking, the
problem of algebraic loops in the controller formulation is
avoided. Furthermore, a stability analysis for the proposed
method is provided, which is the first stability analysis for
extremum seeking controllers using adaptive amplitudes. The
proposed method is illustrated using numerical examples and
it is found that changes in optimum can be tracked accurately
while the steady-state perturbations can be reduced signifi-
cantly.

I. INTRODUCTION

Extremum Seeking Control (ESC) is a data-driven, model-
free control approach whose goal is to maximize (or mini-
mize) an objective of a controlled plant. Typical applications
of ESC include desalination plants, anti-lock braking sys-
tems, or maximum power point tracking in, for example, so-
lar and hydro power, see [1] for more details. The extremum
of the controlled plant is found by first superimposing a small
perturbation signal, for example a sinusoid, on top of the
control signal in order to estimate the gradient of the control
objective with respect to the control signal. Then, the control
signal is adjusted according to the found gradient [2].

The first ESC method, known as the band pass filter
approach, is based on the steepest descent method. It uses
a low pass filter, a multiplier, and a high pass filter to esti-
mate the gradient [2]. Another approach, based on Newton-
Raphson optimization, tries to drive the system into optimum
by estimating both the gradient and Hessian [3]. Recently, a
phasor-based ESC approach was proposed in [4], [5]. Here,
the phasor, which is proportional to the gradient, is estimated
using a Kalman filter and then used to drive the system
into optimality. In general, all methods have in common
that the extremum seeking dither signal is applied to the
plant continuously. This clearly is a disadvantage as it causes
unnecessary variation and control action around the optimal
point of operation once the extremum is found. In practice,
one could actually remove, or at least minimize, the applied
disturbance in order to avoid these variations. Hence, in this
article, we propose phasor ESC using an adaptive amplitude
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in the perturbation signal where the amplitude is a function
of the gradient. Intuitively, this can be understood as follows.
As long as the gradient is large, that is, the current input is
far from the optimum, we apply large excitations in order
to move quickly to the optimal point. As the working point
closes in on the optimum point, the gradient decreases and
hence, the excitation is also decreased.

The concept of adaptive amplitude in ESC is not entirely
new. In [6], Tan et. al. proposed to decrease the excitation
amplitude continuously as the extremum seeking gets closer
to the optimal point. However, the adaption rule therein
is based on continuously decreasing the amplitude based
on a predefined decay rate. This has the disadvantage that
the controller will not be able to respond adequately to
changes in the optimal operation point. Futhermore, because
of the rate of adaption is to be chosen by the operator,
good knowledge is required to make sure that the controller
reaches the optimum in practical time. Another approach,
called Dither Signal Amplitude Schedule, for adapting the
excitation amplitude was presented in [3]. This approach is
based on Newton-like ESC and the adaption rule depends
on the ratio between the estimated gradient and Hessian. A
major disadvantages of this method is that the variable that
will adjust the amplitude, in this case the ratio between the
gradient and the Hessian, is a function of the perturbation
amplitude itself which may lead to spurious adjustments.

In contrast, the method proposed here tries to address
these issues. Specifically, we propose adaptive phasor ex-
tremum seeking control based on the gradient estimation
independent of the perturbation amplitude, which avoids
the drawback mentioned above. Also, unlike the approach
in [6], it enables tracking of the optimal point even after the
initial convergence phase since the amplitude can adapt if the
optimal point changes. Furthermore, semi-global practical
asymptotic stability (SPA) of the proposed method is proven,
which is, to the best of our knowledge, the first stability
proof of extremum seeking control with adaptive perturbation
amplitude.

The remainder of this article is as follows. The problem
is formalized in Section II followed by a brief introduction
to SPA in Section III. The proposed method is shown in
Section IV and its stability is proven in Section V. Section VI
provides numerical illustrations of the proposed method.
Concluding remarks and a discussion of future work follow
in Section VII.

II. PROBLEM FORMULATION

Consider a non-linear, time varying plant with a single
control objective (sometimes also called index) that can be



described by the following state space representation:

dx
dt

= f(x,u) (1a)

y = h(x) (1b)

In (1), x ∈ Rn is a vector representing the state variables,
with initial state x(0) = x0, u∈Rm is the manipulated (input)
variables of the plant, and y ∈R is a scalar representing the
output objective (or index) of the plant. Both f : Rn×Rm→
Rn and h : Rn → R are assumed to be sufficiently smooth.
Furthermore, the steady-state output as a function of a
constant input is assumed to have a minimum (or maximum).
Without loss of generality, we will assume the latter case and
then the objective of the ESC controller is to adjust u such
that the maximum value in y for any given x0 is attained.

Similar to the general approach in [7], we assume that the
input is parametrized by θ with the control law u = γ(x,θ).
Furthermore, we make the following assumptions.

Assumption 1: There exists a smooth function l : R→Rm

such that f(x,γ(x,θ)) = 0 if and only if x = l(θ).
Assumption 2: For each θ ∈R the equilibrium x= l(θ) of

the system ẋ = f(x,α(x,θ)) is globally asymptotically stable
uniformly in θ .

Also, let us define (h ◦ l)(θ) = Q(θ), then our third
assumption is:

Assumption 3: There exists a θ ∗ ∈ R such that:

∂
∂θ

Q(θ ∗) = 0 (2a)

(θ −θ ∗)
∂

∂θ
Q(θ)< 0 ∀ θ 6= θ ∗ (2b)

From Assumption 3, it follows that Q(θ) is strictly in-
creasing for θ ≤ θ ∗ and strictly decreasing for θ ≥ θ ∗ which
ensures a unique maximum at θ = θ ∗. This is even true
without the assumption that ∂ 2

∂θ 2 Q(θ ∗)< 0.

III. SEMI-GLOBAL PRACTICAL ASYMPTOTIC STABILITY

First, let us define the semi-global practical asymptotic
(SPA) stability of a dynamic system as defined in [7]. For
definitions of comparison functions (class K L functions),
please refer to [8, Sec. 4.4].

Definition 1: The system

ẋ = f(t,x,ε) (3)

where x ∈ Rn, t ∈ R ≥ 0 and ε = (ε1,ε2, . . . ,εl) ∈ Rn
>0

is said to be SPA stable, uniformly in (ε1, . . . ,ε j) , j ∈
{1, . . . , l}, if there exists β ∈K L such that the following
holds. For each pair of strictly positive real numbers (∆,ψ),
there exist real numbers ε∗k = ε∗k (∆,ψ) > 0,k = 1,2, . . . , j
and for each fixed εk ∈ (0,ε∗k ),k = 1,2, . . . , j, there exist
εi = εi(ε1,ε2, . . . ,εi−1,∆,ψ), with i = j+1, j+2, . . . , l, such
that the solutions of the system with the so constructed
parameters ε satisfy:

|x(t)| ≤ β (|x0| ,(t− t0))+ψ (4)

for all t ≥ t0, x(t0) = x0 with |x0| ≤ ∆. Furthermore, if j = l,
then we say that the system is SPA stable, uniformly in ε .

Plant Static Map

FoFi
u yi

ym y

ym≈ fo+ Km(yi-u0)

ym(yi)

yiu0

fo
Km

Fig. 1. The non-linear dynamic plant approximated into linear input
dynamics, non linear static, and linear output dynamics parts

The SPA stability concept can be understood as follows.
Given that it is required to bring a system from any given
initial condition inside ∆ into a convergence zone ψ , the
parameters ε can be chosen such that the bounds on the
“uniform” parameter (ε1, . . . ,ε j) depend only on ∆ and ψ
while the “non-uniform” parameters εi, i = j + 1, . . . , l are
allowed to depend also on the other parameters (ε1, . . . ,εi−1).

IV. PROPOSED APPROACH

For the demonstration of the proposed approach, and
without loss of generality, we will approximate our system
as a Wiener-Hammerstein model, that is, linear input and
output dynamics with a non-linearity in between [3], [4], [9]
as illustrated in Fig. 1. Note that this approximation is for
illustration only and will not be used in the stability analysis
provided in Section V.

We assume that the steady-state gain of the input and
output dynamics (Fi(0) and Fo(0), respectively) both are
equal to one. Note that if the gain is not unity, it can be
adjusted and re-scaled together with the non-linear element.
Further, we denote the input and output dynamics gain at
the perturbation frequency ω by Ki and Ko, respectively, and
the corresponding phase shifts by φi and φo, respectively.
We consider the plant input to be u(t) = u0 + ap sin(ω t)
and assume u0 to be almost constant during the cycle. The
non-linear map of the plant when approximated using a first
order Taylor series as shown in Fig. 1 can be written as
ym = f0 +Km(yi− uo) where Km = ∂ym(t)

∂u(t)

∣∣∣
u=u0

. The output

of the plant y will be

y(t)≈ f0 +apKoKmKi sin(ωt +φi +φo)

= β0 +α1ap sin(ω t)+β1ap cos(ω t)
(5)

where β0 = f0, α1 = KoKmKi cosφi + φo, and β1 =
KoKmKi sinφi +φo.

Eq. (5) is a Fourier series approximation of the output,
and it is assumed that the coefficients of this series can be
represented by a Gaussian random walk process [10] which
is a common approach to represent time series signals [11].
We can thus write y(t) as the output of a linear, time-varying
state-space system with state vector z =

[
β0 α1 β1

]T , as

ż(t) = Az(t)+w(t)

y(t) =C(ωt)z(t)+ v(t)
(6)

where w(t) and v(t) are mutually independent disturbances
with Q = qI and R = r as their respective covariances [4]
while A is a 3×3 matrix of zeros and C(ωt) is given by

C(ωt) =
[
1 ap sin(ω t) ap cos(ω t)

]
. (7)



The system is observable and thus, z can be estimated
using many methods such as the discrete time Kalman
filter [12] or the periodogram [13]. In general, it is possible
to use a state observer with time varying feedback

L(t) =
√

q
r

Ln(ωt) =
√

q
r




1√
2sin(ωt +ζ )√
2cos(ωt +ζ )


 (8)

where ζ can be derived by finding the steady-state periodic
solution of the continuous-time Kalman filter similar to the
work in [4] or it can be left as a tuning parameter of the
time-varying state observer.

Remark 1: It is important to note that the proposed ap-
proach is slightly different from the original phasor ESC pre-
sented in [4], [14]. Here, the state vector z =

[
β0 α1 β1

]T
does not depend on the perturbation amplitude ap. This will
be key in avoiding the algebraic loop encountered in [3]
when adapting ap.

With Remark 1 in mind, we could, in principle, use the
fact that

√
α2

1 +β 2
1 = |KoKmKi| ∝ |

∂ym(t)
∂u(t)

|

and make the amplitude of the perturbation signal propor-
tional to

√
α2

1 +β 2
1 . The main problem, however, is the radial

unboundedness of
√

α2
1 +β 2

1 which can cause big values in
ap. Instead, we suggest to use

ρ(α1,β1) =
2
π

tan−1
(√

α2
1 +β 2

1

)
. (9)

Remark 2: Note that ρ(α1,β1) is a continuous function
with ρ(α1,β1)≈ 2

π

(√
α2

1 +β 2
1

)
for a small α1 and β1 and

ρ(α1,β1)≈ 1 for relatively large values.
Thus, similarly to [3], we suggest the adaptive amplitude

adjustment as

ȧ =−λ a+λKgρ(α1,β1). (10)

Further, in order to avoid singularities, we will adjust the
perturbation amplitude to be

ap = a0 +a2 (11)

where a0 represent the minimum amplitude when the system
has converged to the optimum.

The proposed ESC method can now be summarized as:

dz
dt

=

√
q
r

Lg(ωt)y(t)−
√

q
r

Ln(ωt)C(ωt)z (12a)

dθ
dt

= kz2 (12b)

da
dt

=−λa+λKgρ(z2,z3) (12c)

with the input to the plant being

θ +ap sin(ωt) = θ +(a0 +a2)sin(ωt). (12d)

Note that in the original phasor ESC, we have that Lg =
Ln. However, since the convergence error lim

t→∞
(θ − θ ∗) is

dependent on the perturbation amplitude [9], increasing ap
will reduce the accuracy of our controller. Thus, the high
accuracy phasor ESC presented in [15] will be adopted which
uses

Lg(ωt) =




1√
2(cos(ζ ) ḡ(ωt)+ sin(ζ ) ḡc(ωt))√
2(cos(ζ ) ḡc(ωt)− sin(ζ ) ḡ(ωt))




where ḡ(σ) =
m̄
∑

m=0
(2m + 1)sin((2m+1)σ) and ḡc(σ) =

ḡ(σ +π/2). Also note that choosing ḡ(ωt) = sin(ωt) gives
Lg(ωt) = Ln(ωt) as in the traditional phasor ESC algorithm.
The advantage of using the modified modulation signal ḡ(t)
is that

2π∫

0

Q(θ +(a2 +a0)sin(σ))ḡ(σ)dσ = π(a2 +a0)Q′(θ) (13)

for a sufficiently large m̄ as shown in [15], which means
the exact (scaled) gradient will be found independent of the
perturbation amplitude. This will remove the convergence
error as we stated earlier.

Remark 3: It can be shown that if the steady state map is a
quadratic function, then m̄ can be chosen to be zero, and the
Eq. (13) still hold. For the general case, see [15, pp. 4] for
a discussion on how the choice of m̄ affects the convergence
speed as well as the accuracy of the Taylor series expansion.

V. STABILITY ANALYSIS

We start the stability analysis by rewriting and com-
bining the equations of the general non-linear system (1)
with the equations of the improved phasor ESC controller
for the single variable case (with z =

[
β0 α1 β1

]T
=[

z1 z2 z3
]T ). This yields

dx
dt

= f
(
x,γ
(
x,θ (t)+(a2 +a0)sin(ω t)

))
(14a)

dz
dt

=

√
q
r

Lg(ωt)h(x)−
√

q
r

Ln(ωt)C(ωt)z (14b)

dθ
dt

= kz2 (14c)

da
dt

=−λa+λKgρ(z2,z3) (14d)

where C(ωt) =
[
1 (a2 +a0)sin(ωt) (a2 +a0)cos(ωt)

]T

and ρ(z2,z3) =
2
π tan−1

(√
z2

2 + z2
3

)
.

The parameters of the controller will be selected as:

k = ωK = ωδK′,
√

q
r
= Kq,r = ωδK′′, and λ = ωδKλ

where δ is a small positive number, and K′, K′′, as well as
Kλ are O(1) positive constants.

Introducing the time scale τ = ωt, results in

ω
dx
dτ

=f(x,γ(x,θ +(a2 +a0)sin(τ))) (15a)



dz
dτ

=δK′′ (Lg(τ)h(x)−Ln(τ)C(τ)z) (15b)

dθ
dτ

=δK′z2 (15c)

da
dτ

=δ (−Kλ a+Kλ Kgρ(z2,z3)) . (15d)

Next, similar to the analysis of classic ESC [7], [16], we
freeze x at its equilibrium value, that is, x = l(θr + (a2

r +
a0)sin(τ)) and Q(θ) = h(l(θ)). The reduced system can be
seen as the fast dynamics and is then given by

dzr

dτ
=δK′′

(
Lg(τ)l(θr +(a2

r +a0)sin(τ))

−Ln(τ)C(τ)zr) (16a)
dθr

dτ
=δK′zr2 (16b)

dar

dτ
=δ (−Kλ a+Kλ Kgρ(zr2,zr3)) (16c)

where zr =
[
zr1 zr2 zr3

]T , θr, and ar are the state variables
of the reduced fast system. Now, (16) can be expanded and
the averaged system can be calculated as [8]

dza1

dτ
=δK′′


 1

2π

2π∫

0

Q(θa +(a2
a +a0)sin(σ))dσ − za1




(17a)

dza2

dτ
=δK′′

√
2


cos(ζ )

2π

2π∫

0

Q(θa +(a2
a +a0)sin(σ))ḡ(σ)dσ

+
sin(ζ )

2π

2π∫

0

Q(θa +(a2
a +a0)sin(σ))ḡc(σ)dσ

−(a2
a +a0)

cos(ζ )
2

za2− (a2
a +a0)

sin(ζ )
2

za3

)
(17b)

dza3

dτ
=δK′′

√
2


cos(ζ )

2π

2π∫

0

Q(θa +(a2
a +a0)sin(σ))ḡc(σ)dσ

− sin(ζ )
2π

2π∫

0

Q(θa +(a2
a +a0)sin(σ))ḡ(σ)dσ

+(a2
a +a0)

sin(ζ )
2

za2− (a2
a +a0)

cos(ζ )
2

za3

)
(17c)

dθa

dτ
=δK′za2 (17d)

daa

dτ
=δ (−Kλ aa +Kλ Kgρ(za2,za3)) (17e)

where za =
[
za1 za2 za3

]T , θa, aa are the state variables
of the reduced and averaged fast system. Note that from [15]
it is known that,

2π∫

0

Q(θa +(a2
a +a0)sin(σ))ḡc(σ)dσ = 0 (18)

and hence, the corresponding terms in both (17b) and (17c)
disappear. Next, let θ̄a = θa− θ ∗. Then, by using (13), the

system (17) can be further rewritten as

dza1

dτ
=δK′′


 1

2π

2π∫

0

Q(θ̄a +θ ∗+(a2
a +a0)sin(σ))dσ − za1




(19a)
dza2

dτ
=δK′′

√
2(a2

a +a0)

(
cos(ζ )

2
Q′(θ̄a +θ ∗)

−cos(ζ )
2

za2−
sin(ζ )

2
za3

)
(19b)

dza3

dτ
=δK′′

√
2(a2

a +a0)

(
− sin(ζ )

2
Q′(θ̄a +θ ∗)

+
sin(ζ )

2
za2−

cos(ζ )
2

za3

)
(19c)

dθ̄a

dτ
=δK′za2 (19d)

daa

dτ
=δ (−Kλ aa +Kλ Kgρ(za2,za3)) (19e)

Remark 4: The system in (19) provides insight about the
effect of increasing the amplitude: It can be seen that the
right hand sides of (19b) and (19c) scale with factor a2

a+a0.
This implies that the larger a2

a +a0, the faster α1 and β1 are
estimated.

The averaged system (19) is a cascaded system: The com-
bined system (19b)-(19e) can be seen as an input to the input-
to-state stable system (19a). Thus, let us define the following
Lyapunov function candidate with χ =

[
za2 za3 θ̄a aa

]T :

V (χ) =0.5χT P(ζ ,µ,aa)χ

− K′′ cos(2ζ )(a2
a +a0)

(
Q(θ̄a +θ ∗)−Q(θ ∗)

)
√

2K′
(20)

and note that Q(θ̄a + θ ∗) < Q(θ ∗) ∀ θ̄a 6= θ ∗ and that
cos(2ζ )> 0 if 0≤ ζ < π

4 . P(ζ ,µ,a) is given by

P(ζ ,µ,a) =




cos(ζ ) sin(ζ )
√

2µK′′
K′ 0

sin(ζ ) cos(ζ ) −
√

2µK′′ sin(ζ )
K′ cos(ζ ) 0

√
2µK′′
K′ −

√
2µK′′ sin(ζ )
K′ cos(ζ )

µ K′′2 (a2
a+a0)

K′2 cos(ζ ) 0
0 0 0 1

Kλ



.

Let

M1(ζ ,µ) =

[
a0 cos(2ζ )−2µ µ sin(ζ )

cos(ζ ) + a0 sin(ζ )
2

µ sin(ζ )
cos(ζ ) + a0 sin(ζ )

2 a0

]
,

M2(ζ ) =

[
cos(2ζ ) sin(2ζ )

2
sin(2ζ )

2 1

]
,

and

M3(ζ ,µ) =
√

2µK′′Kλ

K′2 cos(ζ )
θ 2 +

2√
2K′′

− 4cos(2ζ )Kλ
(
Q(θ̄a +θ ∗)−Q(θ ∗)

)

K′



and note that M3(ζ ,µ) is positive since Q(θ̄ +θ ∗)−Q(θ ∗)<
0 ∀ θ 6= θ ∗. Then, it can be shown that

2√
2K′′δ

∂V (χ)
∂ χ

f (χ)

=−
[
za2 za3

](
M1(ζ ,µ)+a2

aM2(ζ )
)[za2

za3

]

+
µK′′(a2

a +a0)

K′ cos(ζ )
θ̄aQ′(θ̄a +θ ∗)

−
(
a2

a−aaKgρ(za2,za3)
)

M3(ζ ,µ).

The eigenvalues of M1(ζ ,µ) for µ → 0 are a0emin and
a0emax where

emin = cos(ζ )2− sin(ζ )
√

4sin(ζ )2 +1
2

and

emax = cos(ζ )2 + sin(ζ )
√

4sin(ζ )2 +1
2

,

while the eigenvalues of M2(ζ ) are emin and emax. Moreover,
similar as in [16], it can be shown that for sufficiently
small µ , any ζ < ζ0 = 0.5cos−1

(√
5−2

)
≈ 38.17◦ will

make P(ζ ,µ,a), and consequently also M1(ζ ,µ) and M2(ζ )
positive definite. Hence, we have that

2√
2K′′δ

∂V (χ)
∂ χ

f (χ)≤−
(
a0 +a2

a
)

emin‖[za2,za3]‖2

+
µK′′(a2

a +a0)

K′ cos(ζ )
θ̄aQ′(θ̄a +θ ∗)

−
(
a2

a−aaKgρ(za2,za3)
)

M3(ζ ,µ).

(21)

Since ρ(z2,z3) =
2
π tan−1

(√
z2

2 + z2
3

)
≤ 2

π ‖
[
z2 z3

]
‖ we

can, based on the inequality x2 + y2 ≥ xy, guarantee that
a2

a− aaKgρ(za2,za3) is positive definite. Thus, by choosing
Kg

2
π ≤
√

a0 emin, we can make sure that that the entire right
hand side of the Lyapunov equation will be positive definite.
Finally, the system (19b)-(19e)) is globally asymptotically
stable (GAS) and, in combination with the fact that (19a) is
input-to-state stable, the averaged system (19) is GAS also.

In conjunction with [16, Lemma 1], (16) is thus SPA stable
in
[
ā ζ δ Kλ Kg

]T uniformly in
[
ā ζ

]T . Hence, we
can postulate the following theorem based on [7, Lemma 1].

Theorem 1: Suppose that Assumptions 1, 2, and 3
hold. Then, the closed-loop system (15) with parame-
ters

[
a ζ δ Kλ Kg ω

]T is SPA stable, uniformly in[
a ζ

]T with the time scale t.
Remark 5: If the standard phasor ESC will be used (that

is, m̄ = 0), a similar result can be obtained by approximating
the integration of (13) to yield the same right hand side by
using the approximation presented in [7, Eq. (44)]. Thus, the
approximated averaged system will be GAS, and the non-
approximated averaged system will be SPA, and using [17,
Lemma 1] can be used to prove that the reduced system is
SPA too.
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θ0 (Tan et. al. (2009))

Fig. 2. Illustration of the perturbation-free control signal θ0(t): The true
optimal signal θ ∗ (blue, solid) together with the signal of the proposed
approach (green, dashed), and the approach by [6] (red, dotted).

VI. SIMULATION

In this section, we provide a numerical illustration of the
proposed method where we compare the proposed adaptive
phasor ESC to classic ESC with a constant decay rate of the
perturbation amplitude as proposed by [6].

A. Simulation Model

The system under consideration is given by the non-linear,
time-varying state-space model

ẋ =−10x+θ −θ ∗(t) (22a)

y =− x2 (22b)

where

θ ∗(t) =





0 0≤ t < 500

−2
(

1− e−5(t−500)
)

500≤ t < 1000

−2+0.1
(
t−103

)
e−0.01(t−103) 1000≤ t

.

It follows that the steady-state map of this system is Q(θ) =
−(θ −θ ∗(t))2 which has a maximum y∗ = 0 at θ ∗(t).

The parameters used in the simulations are ω = 2rad/s for
the perturbation signal frequency, q

r = 1, ζ = π
8 , a0 = 0.025,

a(0) = 0.25, θ0(0) = 2, k = 0.025, and λ = 0.0025 for both
approaches. For the proposed approach, Kg = 1.5 was chosen,
while for the comparison, Kg = 0 (as per definition).

B. Results and Discussion

The results are shown in Fig. 2-Fig. 4. From Fig. 2, it
can be seen that the proposed approach (green, dashed line)
is able to track the optimum θ ∗ accurately (blue, solid).
Comparing it to the method with exponentially decaying
amplitude [6] (red, dotted), we see that the two methods
perform similarly in the beginning during the start-up phase.
However, once the amplitude of the latter approach has
decayed to a minimum, it is not able to track changes in
the optimal point as quickly as the proposed method (see
the changes at t = 500s and t = 1000s.)
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Fig. 3. Illustration of the perturbation amplitude ap(t): The proposed
approach (green, dashed) and the approach by Tan et. al. [6] (red, dotted).
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Fig. 4. Illustration of the plant output y(t): The proposed approach (green,
dashed), as well as the approach with exponential decay [6] (red, dotted).

The adaption of the perturbation amplitude is illustrated
in Fig. 3. As can be seen, the proposed method adapts the
perturbation amplitude as desired. If there is no change in
the optimum point, the amplitude decays in order to mini-
mize the unnecessary oscillations around the working point.
However, once the optimum point changes, the amplitude
is increased quickly in order to track the change (green,
dashed). In contrast, with the exponential decay approach
(red, dotted) the amplitude decays to its minimum value with
time and remains there, which makes it respond more slowly
to changes.

Finally, the behavior of the plant output y(t) is depicted in
Fig. 4. As can be seen from the figure, the proposed approach
is able to drive the plant to optimality quickly and without
much overshoot (green, dashed). The negative overshoot in
the approach by Tan et. al. [6] can be explained by comparing
the output to the control signal shown in Fig. 2: The negative
dip in the output is caused by the lagging control signal
θ(t) which has a peak when the optimal control signal θ ∗
is decaying (around t = 1250s).

VII. CONCLUSION AND FUTURE WORK

In this work, an adaptive perturbation amplitude phasor
extremum seeking control strategy was suggested. It was
proven that the method is semi-globally, practically asymp-
totically stable. Furthermore, simulations illustrated that it
is able to track changes in the optimal point quickly while
reducing the perturbation amplitude to a minimum when in
steady-state.

Future development of this work will include an analysis
of the connection between adaptive amplitude (both classical
and phasor) ESC and disturbance rejection. In particular, it
is of interest to analyze how robust the proposed methods
are toward both vanishing and non-vanishing disturbances
as well as measurement noise which is always present in
real world applications. Furthermore, a natural extension of
the proposed method will be vanishing perturbation ESC,
that is, it will be investigated whether we can develop robust
ESC with a vanishing dither signal. We are also planning to
evaluate the practical applicability of the proposed method
by applying it to a district heating and cooling system.
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