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Abstract—This paper is concerned with sigma-point meth-
ods for filtering in nonlinear systems, where the process and
measurement noise are heavy tailed and enter the system non-
additively. The problem is approached within the framework
of assumed density filtering and the necessary statistics are
approximated using sigma-point methods developed for Student’s
t-distribution. This leads to UKF/CKF-type of filters for Student’s
t-distribution. Four different sigma-point methods are considered
that compute exact expectations of polynomials for orders up to
3,5,7, and 9, respectively. The resulting algorithms are evaluated
in a simulation example and real data from a pedestrian
dead-reckoning experiment. In the simulation experiment the
nonlinear Student’s t filters are found to be faster in suppressing
large errors in the state estimates in comparison to the UKF
when filtering in nonlinear Gaussian systems with outliers in
process and measurement noise. In the pedestrian dead-reckoning
experiment the sigma-point Student’s t filter was found to
yield better loop closure and path length estimates as well as
significantly improved robustness towards extreme accelerometer
measurement spikes.

I. INTRODUCTION

The problem of state estimation is an ubiquitous problem in
science and engineering. It arises in numerous sensor fusion
applications in aerospace industry [1], smartphones [1], [2],
health technology, as well as pedestrian dead-reckoning and
indoor navigation [3], [4], among others.

In a mathematical sense, the state estimation problems arise
in partially observed systems, where the measurements of a
stochastic process are a function of the process and external
noise. In this article, such state-space models of the following
form are considered:

Xt = f(thla Ut)7

1
Yy = h(X¢, V3), o

where X; € RYX is a latent process with initial distribution
Xo ~ p(x0), Y; € RY is the measurement of Xy, U; € R is
heavy-tailed process noise, f: R%x*4v — R4x is the transition
function of the state, V; € R is a heavy-tailed measurement
error, and h: RIx*dv _y R4y ig the measurement function.
Furthermore it is assumed that C[X;_1, U] = 0, C[V;, U] = 0,
and C[X,,V;] = 0, where C[-, -] denotes the covariance. The
state estimation problem is then to find a good estimate (poste-
rior mean) of x; given the measurement sequence, y;.;, that is,
@4y = E[X¢ | y1.¢), and the uncertainty (posterior covariance),
V[X¢ | y1.t]. Moreover, the notation X, £ X, |y, is used
for brevity. Furthermore, if X ~ St(u,3,4) then

Y= Ev[){]’

3 2
where it’s important to note that the covariance only exists for
¥ > 2.

State estimation in systems with heavy-tailed process and
measurement noise has already been studied to some degree.
Student’s t filters are developed for linear systems in [5], where
it is also mentioned that their framework can be extended to
nonlinear systems in a manner similar to the development of
the extended Kalman filter for Gaussian systems. Nonlinear
systems with additive noise, Gaussian state transitions, and
Student’s t observation are studied in [6], [7] where a variational
Bayes approach is employed. In [8], an approximating smoother
for the case with additive Student’s t noise in the process
and measurement is developed using variational Bayes. In the
context of Gaussian processes in machine learning, Student’s t-
distributions are also sometimes used [9], [10], and state-space
methods for that context have been developed, for example, in
[11]. Other methods for robust filtering include, for example
{1 and H., approaches [12], [13].

In contrast, this paper develops sigma-point methods for fil-
tering in nonlinear systems where the process and measurement
noise are heavy-tailed, more specifically Student’s t-distributed,
and enter the system non-additively. The methods use numerical
integration algorithms for integrating nonlinear functions with
respect to Student’s t-distributions, which are instances of the
fully symmetric integration formulas presented in [14]. In
this scenario the distribution of the state can be matched to
a Student’s t-density leading to a nonlinear extension of the
Student’s t filters presented in [5].

II. SIGMA-POINT STUDENT’S T FILTERING

Here the filtering problem is approached from the point of
view of statistical linear regression (SLR) [15]-[17], where
we reformulate a sigma-point filtering approximation as a
linearization of the state-space model with modified noise
terms to account for the linearization error. Sigma-point filtering
refers to numerical integration schemes that approximate the
quantities needed to perform filtering by evaluating the function
whose expectation is sought at a set of so called sigma-points;
the expectation is then computed by a weighted sum [18]. This
section proceeds with a discussion on Student’s t filtering in
the linear case, followed by Student’s t statistically linearized



filter and ends with Student’s t sigma-point filtering where
sigma-point methods for Student’s t-distribution are presented
along with algorithms for performing approximate statistically
linearized filtering in the Student’s t filtering framework.

A. Student’s t Filtering in Linear Systems

Methods for Student’s t filtering in linear systems have
already been developed [5]. Though since it’s important for
the development of Student’s t filtering in nonlinear systems
the results are presented here as well.

Suppose the system is linear, that is f(X;_1,U;) =
ANX, 1 + BOU, and h(X, V) = AMX, + BMY,
where A() e Rixxdx W) ¢ Rixxdv A(h) ¢
Rivxdx and BM ¢ R%*dv  Furthermore, assume
Xi—1)t—1, Ut, Vi are jointly Student’s t-distributed according
to St(ue—1,2¢—1,%:—1), where

Ty q)t—1 Siip—1 0 0
Ui—1 = 0 DI 0 Yu, 0. @3
0 0 0 Xy

Then the random variables, Xy;_;, V; are jointly Student’s t
distributed with the parameters

b [ADE ] [Egea
H“t - I 0 - 0 ’ (43)
Z/ _ _A(f)itfutfl(A(f))T + B(JC)XDUr (B(f))T 0
t | 0 EV}
= [P Ql (4b)

and degrees of freedom parameter, 9} = ¥;_1, unchanged [19].
Going from (3) to (4) corresponds to the prediction step in a
Student’s t filter [5]. Now, the joint distribution of Xy;_1,Y;
is similarly given by a Student’s t-distribution with parameters

| Ty
pe = _A(h)£t|t_1:| (5a)
5 [ it\}q ) Sope—1 (AM)T
' _A(h)2t|t—1 A(h)2t|t—1(A(h))T + BMWxy, (BM)T
[ EA3t|t71 ZA:ttlY:|
= |a L I (5b)
|2y, e—1 Yy,
Hence, the update step is then given by [19]
9 = 0} + dy, (62)
Tyje = Typp—1 + 2t\t71,YtZ;/tl(yt - A(h)iﬂt*l)v (6b)
. I+ A%, . i
tt = Wdi(zt\tq - Zt|t71,Ytzyt12£t_1,yt)a (6¢)
where

Az,t = (ys — A(h)if?t\t—l)TZ)_/tl(yt - A(h)it\t—l)-

This provides an exact filter that converges to the ordinary
Kalman filter since the degrees of freedom parameter, ¥; — co
as t — oo. Though, it was proposed in [5] that assuming
X¢_1)t—1 and Uy are marginally Student’s t, the prediction step

can be carried out by approximating their joint density by a
Student’s t with degrees of freedom parameter min(¥;—1, 9y, )
and rescaled matrices ﬁ?t,l‘t,l and Xy, in order to preserve
the covariances of the marginal distributions. The update is then
carried out by assuming Xy;_; and V; are marginally Student’s
t and their joint distribution is approximated in the same manner
with degrees of freedom parameter min(dy,, min(d;_1, 9y, ))
and the matrices XAJW,_l and Xy, are rescaled to preserve
covariances.

B. Statistically Linearized Student’s t Filter

Since both the Gaussian distribution and the Student’s t-
distribution are closed under linear transformation the nonlinear
filtering problem in either case is suitably solved by linearizing
the transition function, f(X,U), as well as the measurement
function, h(X, V). Under the assumption that X; 1, U, V; |
y1.t—1 are jointly Gaussian, the ordinary Kalman update may
be employed. Though one can also assume that X;_q, U, V; |
y1.4—1 are jointly Student’s t which enables the Student’s t
prediction and update.

Assume that X and W are uncorrelated, with E[X] = px,
E[W] =0, C[X, X] = Xx, and C[W, W] = Zy. Then, for
an arbitrary nonlinear function g(X, W), approximations of
the following form are sought:

g X, W)~ AX +BW + D+ E, @)

where A € R¥%4x B ¢ R™>dw D c R E € R? and F
is a zero-mean random variable with covariance matrix V[E].
Note that if g = f then W = U and d = dx, and if g = h
then W = V and d = dy. The statistical linear regression
(SLR) solution to this problem is given as [15]-[17]

A =Clg, X]V[X]™1, (82)
B = Clg, W] VW], (8b)
D =El[g| - AE[X], (8c)
V[E] = V[g] — AV[X]AT — BV[W|BT (8d)

In the Gaussian case this can be interpreted as minimizing the
Kullback-Leibler divergence of the approximate joint density
of g(X, W) and X implied by Equations (8a) to (8d) and the
true joint density (see [17]).

The linear Student’s t filter equations can be applied provided
that the quantities in Equations (8a) to (8d) are available and
the additional assumption that

Xi 11, Ui, Vi, EDVED | g1~ St(pg—1, S, 95-1),

where
N T
pe—1 = [T_e-1 0 0 0 0],
Doy —2
S = ol bikdiag (V[Xt,l‘t,l],V[Ut], o
t—1

VIV, VIEL) VIE™)).



The prediction step can then be carried out according to the
following

Xi—1)t—1
X1 A B 9 1 0 Ui DY)
Viil=10 0 T 00 Vi |+] 0
B o o oo 1| B 0
EM

Xyt—1, Ve and Et(h) are now jointly Student’s t-distributed with
parameters

2“15,1 0 O

/ Tyjp—1 /
Wy = 0 and X, = 0 Yy 0 9)
0 0 0 EE(h)

The joint distribution of Xj;_1,Y; is then readily retrieved by
the following linear transformation

I 0 o] [Xu

X1 v 0
= L |, (10
{ Yi ] {Aih) By J £ “ o] 19
t

where the parameters of the joint distribution are given by

_ Tje—1 11

e EW&mey b

5, = %t\f—l p 2Ajtlt—l(Agh))T (12)
AP SRV (X, V)]

Finally, the parameters of the distribution of the state are then
readily updated by equation (6).

C. Student’s t Sigma-Point Filter

The expectations present in Equations (8a) to (8d) are
generally not tractable. Though, in the framework of Gaussian
filtering, they can be approximated by, for example, the use
of numerical integration methods [14] that give the correct
integrals for polynomials of up to order 3, 5, 7, or 9 [20], [21] or
by using various other sigma-point methods [18]. However, the
integration methods developed in [14] are not only applicable to
Gaussian distributions, but for any fully symmetric distribution.
As a matter of fact, the Student’s t-distribution is also fully
symmetric, among other distributions.

The sigma-point method for computing the expectation
of a non-linear function, §(X) with respect to Student’s t-
distribution takes the following form

BHX0] = [ gla)St(ai . Sy, 0x)de
= /g(ltX + E;%x')St(x';O,I,ﬁX)dx'
_1
~ > wid(ux + S5 ).
In general, Student’s t sigma-point methods differ from the

Gaussian sigma-point methods in the choice of the weights,
w;, and the sigma-points, X;.

13)

Student’s t sigma-point method of degree 3 is given by the
following weights [14]

oo {dXJrl =1 2d (14
2dxtr) J T beer40X
and the sigma-points
0 j=0
Xj: S€; jZl,...,dX (15)
—S€j_dx j=dx+1,...,2dx
where
Ox :
= d 16
s Qk_%x+@> (16)

The unit vectors, e;, denote basis vectors from the canonical
basis and the quantity, &, is a free parameter in the algorithm.
Clearly, Student’s t sigma-point method of degree 3 is exactly
the same as the unscaled unscented transform [22]. The factor

192{ 5 in the coordinate scaling is due to the fact that the
covariance is V[X'] = 52XI. That is, if the integral in

equation (13) would have been transformed into an expectation
with regards to the variable

a7

the unscaled unscented transform would have been recovered.
For Student’s sigma point method of degree 5 the weights
are computed as [14]

2
)

2
%(E) (Iy — (dx — Dlg) j=1...,2dx , (18)

2
1L
4(14) 122

2dx!
=<2d 1,...,2d  E———
\7[3,5] { x +1, ; X+(dX—2)|}

J=0

JE ~7[s,s]

where

and the sigma points are given by

0 7=0
X — se; j=1,...,dx (19)
/ —sej_ay Jj=dx +1,...,2dx
S[Js,s] Jje ‘7[575]

and S[Js o is the j-th element of the set of points S, 4
generated by all possible combinations of assigning the pairs
(s,5),(—s,8),(s,—s), and (—s, —s) to the coordinate indices



(a) Scheme of degree 3, 5 points. (b) Scheme of degree 5, 9 points.
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(c) Scheme of degree 7, 17 points.  (d) Scheme of degree 9, 25 points.

Fig. 1. Placement of sigma-points for Student’s t, ¥ = 9, (red), Gaussian
(blue) and a circle of radius 10 (black). (a) Sigma-point method of degree
3, (b) sigma-point method of degree 5, (c¢) sigma-point method of degree 7,
and (d) sigma point method of degree 9. It is clear that Student’s sigma-point
method prefers to place the points further from origin.

of a vector of length dx such that no duplicate vectors are
generated. The quantities I, 14, I22, and s are given by

=5 (200)
302
I, = X 20b
1= Oy —2)(0x )’ (200)
Ipy — % (20¢)
27 Wx —2)(x — 4)’ ¢
5= <12> ° (20d)
Iy

The formulas for generating sigma-points and their corre-
sponding weights are a lot more involved for methods of higher
degrees and will not be listed here, instead, refer to [14]. Some
useful formulas for computing the integrals in [14] when the
weight function is a Student’s t density are provided in [23].

Typically, the sigma-points of Student’s t-distribution are
placed further away from origin than for the Gaussian case,
except for the schemes of degree 3 where both the Gaussian
and Student’s t method produce the same numerical scheme.
Though when ¥ x — oo the placement of the Gaussian sigma-
point methods is recovered. This is illustrated in Fig. 1 where
the sigma-points of a Gaussian and a Student’s t-distribution,
both with identity covariance, are shown.

It is also important to note that since sigma-point methods
rely on the computation of higher order moments, the degree

of freedom parameter, ¥, puts a restriction on the degree of
the sigma-point scheme. More specifically if the sigma-point
scheme is of order 2p + 1 it is necessary for the degrees of
freedom to abide by 2p < ¥ in order to have a mathematically
sound scheme. Furthermore, the degrees of freedom put a
restriction on what functions have an expectation. Namely,

1
G(px + X?z) can not grow faster than ||z||”.

Algorithm 1 Student’s t Sigma-Point Predictor I

Input: 2y, iﬂu?m“,ﬂt

Output: T 1)1, 24116, Vit1

Approximate E[f(X;i1)¢, Ury1)] and V[f(Xyy1p, Urgr)],
with a Student’s t sigma-point method.

Tp1pe < ELf (Xepe, Urgr)]

Yipip ﬁzT?V[f(Xt-i-Hta Uty1)]

Algorithm 2 Student’s t Sigma-Point Predictor 11

Input: jt\ta 2t|thEUf-¢-1v EVf,-H s, ’l9Ut+1 ) 79Vt+1

Output: Ty 1), X y1)¢, Vet

Uy mir}(ﬂta 79Ut+1 ) 79Vt+1)

Rescale Yy, Xy, ,, Xv,,, so that the covariances are the
same after degree of freedom change.

Approximate E[f(Xyi1)¢, Urt1)] and V[f(Xyp1ps, Up)],
with a Student’s t sigma-point method.

Trp1pe < E[f (Xepe, Urs)]

lg%ZQV[f(thLut’ Usy1)]

Algorithm 3 Student’s t Sigma-Point Updater

Input: yo i1, Zop1pe, Begape, v, O

Output: &y 1)141, Xpy1per1, Vet1

Approximate E[Y; 1], V[Y;11], and C[ X1, Yiq1] with a
Student’s t sigma-point method.

Zi41 + Yep1 — E[Yiq1]

EYt+1 — %V[Y—t+1}

Kip1 = 252C[X g1y, Yeg] 5y,

Ay,t-}-l < zalz;ilztﬂ

1915_;'_1 <— ﬂt —+ dy

Tip1jer < Tepae + Kep12e4a

DR ($ - Ky Sy, KT
D t+dy t+1|t t+14Y 1 D1

Vi1t ¢

The algorithm for the Student’s t filter in the case where
it converges to the unscented Kalman filter is constructed
by cycling through the predictor in Algorithm 1 and the
updater in Algorithm 3. A Student’s t filter with preserved
heavy tail behavior is then retrieved by employing Algorithm 2
as a predictor instead. The filter resulting from Algorithm 1
converges to the UKF hence its’ only advantage is better
supression of outliers prior to asymptotics kicking in. On
the other hand the filter resulting from Algorithm 2 will
preserve low degrees of freedom indefinitely and is therefore
more suitable in the case where outliers are expected at any



time during the filtering procedure. Note that the approach
for preserved heavy tail filtering here differs from the one
in [5] though only when ¥y, > ¥v,. Nevertheless if it is
desired to do predictions with high degrees of freedom and
updates with low degrees of freedom only small adjustments
to Algorithm 2 and Algorithm 3 are required to achieve this.
It is also important to note that since the covariance update
in Algorithm 3 depends on the squared Mahlanobis distance
between measurement and predicted measurement, the filter
may behave differently than the UKF even for fairly high
values of the degrees of freedom parameter. To clarify, the
filters’ behaviors are only similar when A;t 1R dy . That is,
if the squared Mahalanobis distance between measurement and
measurement mean significantly deviates from this relationship,
then there is either a downscaling or an upscaling of the filter
covariance in comparison to the UKF.

III. EXPERIMENTAL RESULTS

The practical applicability of the proposed Student’s t sigma-
point filter is evaluated using a simulated example first and
then in a pedestrian dead-reckoning (PDR) application using
an inertial measurement unit (IMU) where high peaks in
the measured IMU signals are a common problem. In both
examples, the sigma-point filter is compared to the standard
UKEF as well as the extendet Student’s t filter [5].

A. Simulated Example

The following system is considered

1 0.1 1 1
> 'l I Lt ==/5-ov B == e I B il
2) 1 1_ 0.1 x® t+1
X1 THIX] THIXAT ] [
(21
1)y x
1+ V)X
Yoo = | Vig 22)
1+ Vi) X

where the noise processes are governed by the following
probability laws,

Upir ~ 0.95N (u;0,0.01T) + 0.05A (u; 0, 51)
Vig1 ~ 0.9N (v;0,0.011) + 0.1N (v; 0, 51).

(23)
(24)

The system is simulated 5000 times for 250 time steps.
Student’s t sigma-point filter is compared against the unscented
Kalman filter and the extended Student’s t filter. The sigma-
point filters used the scheme of degree 3 and the free parameter
was set to k = —1. The degrees of freedom parameter was set
to ¥ = 4 for Student’s t filters. The performance of the filters
are compared in terms of execution time (ET), mean norm error
(MeNE) and maximum norm error (MaNE). Where mean norm
error and max norm error refers to the time average and the
maximum value of the sequence {||#; — x¢||}2%Y, respetively.
x; denote the realised value of X; and z; refers to the filter
estimate of x;. In order to evaluate Student’s t filters for some
moderately large degrees of freedom parameter the preceeding
experiment is run again but with ¥ = 50. The simulations
were carried out in Matlab on a computer with an Intel Xeon
E3-1231 v3 CPU 4 x 3.4 GHz and 16 GB of RAM.

TABLE I
CoMPARISON BETWEEN UKF, ESTF, AND SPSTF IN TERMS OF MEAN AND
MAX NORM ERRORS IN 5000 MONTE CARLO SIMULATIONS WITH
TRAJECTORIES OF 250 SAMPLES, ¥ = 4.

MeNE UKF ESTF SPSTF
2.5%-th percentile 6.2890 4.1578 4.2166
50%-th percentile 12.7680 8.6331 8.7770
97.5%-th percentile 25.6030 59.9242 19.8164
MaNE UKF ESTF SPSTF
2.5%-th percentile 41.1887 58.3000 67.9382
50%-th percentile 66.7930 189.7000 212.7570
97.5%-th percentile | 162.7787 | 3569.4000 | 639.4494
TABLE 11

CoMPARISON BETWEEN UKF, ESTF, AND SPSTF IN TERMS OF MEAN AND
MAX NORM ERRORS IN 5000 MONTE CARLO SIMULATIONS WITH
TRAJECTORIES OF 250 SAMPLES, ¥ = 50.

MeNE UKF ESTF SPSTF
2.5%-th percentile 6.3708 4.7380 4.7355
50%-th percentile 12.8018 9.2261 9.2109
97.5%-th percentile | 24.4484 26.2806 19.7414
MaNE UKF ESTF SPSTF
2.5%-th percentile 40.7023 49.4582 49.4700
50%-th percentile 66.5971 133.3444 | 133.4799
97.5%-th percentile | 155.1950 | 708.7380 | 452.3309

B. Pedestrian Dead-Reckoning Example

PDR has many different applications in localization and
tracking, for example for tracking the movements of firefighters
in and around accident sites. The predominant approach to
solving this problem is to use strapdown inertial navigation
using IMUs, attached to, among others, the users legs or
embedded in their shoes [24]. Due to the nature of the IMU, an
often encountered problem is high peaks in the measurement
signals during the step-down phase of the gait cycle [4]. These
spikes can cause errors in the PDR system as they violate the
Gaussian assumption of the measurement and process noise.
Hence, a filter based on heavy-tailed noise ought to be more
robust in these situations.

1) Dynamic Model and Experiment Setup: PDR commonly
makes use of indirect Kalman filtering [3], that is, the measured
accelerations and rotational velocities are treated as control
inputs to the system and then directly integrated. This, however,
has the disadvantage that sensor biases and noise cause the
integrator to drift. In order to mitigate that, known conditions of
the gait cycle are used to generate pseudo-measurements of the
integration error. One such state in particular is the stationary
phase where the foot is still on the ground, that is, its velocity is
zero. Comparing this known velocity to the integrated velocity
yields the so called zero-velocity updates (ZUPT) that can be
used to adjust the integrator. The discretized integrator is then
given by

P Iy Atl; 0 Pio1 &y
vl =10 I3 0 v | + | At | ar (25)
a 0 0 QwM)| g 0
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(a) A trajectory, (mgl),azg)), of 250 samples and the filter
estimates. The degreees of freedom in Student’s t filters were

set to ¥ = 4.
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(b) The instantaneous norm of the error in state estimates, the
degrees of freedom in Student’s t filters were set to ¥ = 4.

Fig. 2. Visualization of the performance of the unscented Kalman filter (UKF),
the extended Student’s t filter (estf), and the sigma-point Student’s t filter
(spstf). (a) A sample trajectory of length 250 with the filter estimates of the
trajectory, (b) The norm of the error in state estimates of the filters. Student’s
t filters used a degrees of freedom parameter, ¥ = 4. Student’s t filters are
significantly faster in supressing large errors compared to the UKF.

where p; is the position of the person in the reference coordinate
frame at time instant ¢ and v, its velocity. g; is the rotation
quaternion from the IMU coordinate frame to the reference
coordinate frame and At is the time since the last integrator
update. @ and w} denote the acceleration and gyroscope
measurements both in the IMU coordinate frame, respectively,
while a; denotes the acceleration in the reference coordinate
frame and is given by

M_g)oq;.

Here, o denotes the quaternion product. Furthermore, the sub-
matrix Q(wM) in (25) is given by

M|At
Q(wM) = cos (M) I,

atZQtO(a

2
M,z M,y M,z
0 Wy Wy Wy . |wM|At
M,z M,z M,y | sin | —t5—
H 0 wy —w, 2
+ M,y M,z 0 M,z M
Wy —Wy Wy |ewi” |
M,z M.,y M,x
w; wy —w; 0
Finally, the error measurement can be described as
Ytp = Uref — Vg + Tt = —Vg,, + T, (26)

since the reference velocity during the stationary phase is
assumed to be v,y = 0. Furthermore ¢, denotes the stationary
phase’s detection time and 7, is additive measurement noise.
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(a) A trajectory, (xgl),:cgz)), of 250 samples and the filter
estimates. The degreees of freedom in Studnet’s t filters were

set to ¥ = 50.
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(b) The instantaneous norm of the error in state estimates, the
degrees of freedom in Student’s t filters were set to ¥ = 50.

Fig. 3. Visualization of the performance of the unscented Kalman filter (UKF),
the extended Student’s t filter (estf), and the sigma-point Student’s t filter
(spstf). (a) A sample trajectory of length 250 with the filter estimates of the
trajectory, (b) The norm of the error in state estimates of the filters. Student’s
t filters used a degrees of freedom parameter, ¥ = 50. Student’s t filters are
notably faster in supressing large errors compared to the UKFE.

For a more thorough introduction to PDR dynamics and the
indirect Kalman filtering methods commonly used therein,
please refer to [3] or [4].

The experimental data was gathered as follows. An LG
Nexus 5 smartphone was tightly strapped to a test subject’s
lower leg just above the ankle. The test subject was then asked
to first stand still for about 5s and then casually walk along
a predefined path (a loop starting and ending at the same
position) while the IMU data was gathered at a sampling rate
of 200 Hz for both, the accelerometer and gyroscope.

The parameters used for evaluation were

R=1x10"3I;

2130 ] and

Q:[o I3

for the process noise and the pseudo measurement noise
covariances, respectively. The degrees of freedom for the t
distributions were chosen to be 3 in order to preserve as heavy
tails as possible. Furthermore, the initial position and velocity
was set to zero (corresponding to standing still at the origin
of the reference coordinate system) and the initial orientation
was determined from the stationary data in the beginning of
the measurement sequence. Finally, for the detection of the
stationary phase, the generalized maximum likelihood ratio
test shown in [25] is used, where the noise measurement noise
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Fig. 4. Estimated trajectories using the standard UKEF, the extended Student’s
t filter (ESTF), and the proposed sigma-point Student’s t filter together with
the reference trajectory.

covariances were set to

Y,=1x10""diag ([5 1 6]),
Y, =1x10""diag ([0.2 0.1 0.3])

for the accelerometer and gyroscope, respectively. The detection
threshold was set to v = 6 x 102 and the test data length was
set to N = 10 samples.

2) Results and Discussion: Fig. 4 illustrates the estimated
trajectories for all three filters together with the predefined
path. As it can be seen, the estimated trajectories match the
predefined path in shape but are slightly off in the y-direction,
especially after the third turn (the starting point is (0,0)).
The complete trajectory length is 73.6 m while the estimated
trajectory lengths are 84.3 m for the UKF, 93.7 m for the ESTF,
and 78.5m for the SPSTF. Furthermore, the offset at the end
of the loop (loop closure error) is 4.6 m for the UKF, 5.4m
for the ESTF, and 3.9 m for the SPSTF. This indicates that the
SPSTF is slightly more accurate in both, travelled distance and
loop closure error. Also, it is interesting to note that the ESTF
actually performs worse than the UKF, suggesting that the
linearization approach is inferior to the sigma-point approach
in general for this problem.

The individual components of the position and speed
estimates are depicted in Fig. 5 and Fig. 6. No major difference
between the UKF and the SPSTF can be observed in the
position estimates except for the diverging behavior in p*(t)
around t = 60s (Fig. 5). Again, the ESTF exhibits the most
deviating behavior, especially in the p*(¢) component. More
interestingly, an important difference can be seen in the plots
for the speed estimates in Fig. 6. Comparing the estimates for
the UKF and the SPSTF, it can be seen that the UKF suffers
from larger peaks. This is very prominently visible in the plot
for 9¥(t) around ¢ = 20s...40s. Note that during that time,

the direction of motion is primarily in the positive y-direction.

Hence, the negative peaks estimated by the UKF are likely not
true motions of the foot (moving the foot backwards) but rather
caused by the spikes in the acceleration measurements when
putting the foot on the ground. Hence, the results indicate that
the SPSTF is more robust toward these kind of extreme value
measurements since it uses a heavy-tailed distribution as the
underlying noise model. Again, the behavior of the ESTF is

| UKF [
ESTF
g = , SPSTF ||
~ J , |
mo-2f
_4 L | | | N
0 20 40 60 80
t/s
30
g 20 |-
~
=
0
0
UKF
2 ESTF ||
g SPSTF
~
< U |
?g ) L _MN’M..«'NW
| | | M"‘"
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t/s

Fig. 5. Estimated position components using the standard UKF, the extended
Student’s t filter (ESTF), and the proposed sigma-point Student’s t filter
(SPSTF).

different from the sigma-point based filters in the sense that
it has significant peaks in the 9*(¢) and 0¥(¢) components,
which are not present in the sigma-point based filters.

IV. CONCLUSION

A sigma-point method for filtering nonlinear systems where
Student’s t-distributed process and measurement noise enter the
system non-additively was developed in an analogous manner
to the UKF. Student’s t sigma-point method differs from the
Gaussian one in that it prefers to place the sigma-points further
away from the origin, reflecting the heavier tail.

The resulting algorithm was compared to an extended
Student’s t filter and the UKF in a simulation experiment
where Student’s t filters were found to be faster in suppressing
large errors in the state estimates in comparison to the UKF
though they may momentarily produce very large errors, the
extended filter in particular. All the same, Student’s t filters
were found to be superior to the UKF in sense of mean norm
error. The sigma-point Student’s t filter was also compared to
the UKF in a PDR experiment where Student’s t filter was
found to outperform the UKF in terms of error in the estimated
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Fig. 6. Estimated speed components using the standard UKF, the extended
Student’s t filter (ESTF),and the proposed sigma-point Student’s t filter
(SPSTF).

trajectory length, loop-closure error, and it giving more realistic
velocity estimates.

Future work will include a more in-depth study of the
stability properties of the Student’s t filter in relation to the
Kalman filters. That is, to investigate the question whether it is
possible to use a Student’s t filter in cases where Kalman filters
fail to converge. Another open aspect is the choice of degrees
of freedom and how it affects the behavior of the proposed filter.
A possible extension is to use an ensemble of filters using
different degrees of freedom or considering the degrees of
freedom as a random variable itself. Furthermore, investigating
marginalized particle filters using Student’s t filters in place of
Kalman filters for the marginalized states.
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