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Abstract—In this paper, IMU and magnetometer models that
enable pedestrian dead-reckoning without step detection or zero
velocity updates on hand-held devices such as smartphones are
proposed. The models are suitable for usage with any standard
Bayesian filtering or smoothing technique and thus, do not
require customized estimators. The method is evaluated in a real
scenario using a dataset of approximately three minutes with a
trajectory length of 302m. It is found that the overall shape of
the estimated trajectory matches well with the GPS reference
trajectory with an estimated trajectory length of 293m. Some
problems in the heading estimation are observed.

I. INTRODUCTION

Pedestrian dead reckoning (PDR) has become a promising
low-cost method for a wide range of applications such as
tracking and navigating for first responders at accident sites [1]
or more consumer-oriented applications such as navigation
in areas with limited coverage of global navigation satellite
systems. The advance of PDR is largely due to the increasing
availability of low-cost microelectromechanical systems-based
inertial measurement units (IMUs) and magnetometers in smart-
phones, wearables, or specifically designed sensor platforms.

Compared to traditional strap-down navigation [2] where the
IMU is affixed to the moving platform and motion is relatively
smooth, the sensors can generally move more freely and are
subject to much more variable movements in PDR. A notable
exception to this is foot-mounted PDR [3], [4] where dedicated
sensors are mounted to a user’s leg or embedded into their
shoe. Such solutions work well for professional personnel such
as firefighters or first responders where an additional device
can be seen as part of their equipment. Thus, it has gained
considerable attention and well working solutions, mostly based
on an error-formulation Kalman filter with filter updates during
the stationary phase (zero velocity and/or zero angular rate
updates) have been developed [5], [6]. However, these solutions
are limitedly useful for consumer applications as the users
might be reluctant to wearing extra sensors mounted to their
legs just for navigating. Instead, it is desirable to make good
use of the existing sensors in smartphones, activity trackers, and
smartwatches. Since techniques such as zero-velocity updates
can not be used reliably for hand-held (or pocket-carried)
devices, other approaches suitable for this problem are required.

Existing solutions for such problems are often based on
a combination of step detection together with step length
estimation and subsequent integration [6], [7]. For example,
in [8], step detection and heading estimation algorithms are
developed and combined with existing step length models to
build a PDR system. A more advanced solution that takes
different user behavior and device carrying situations into
account is developed in [9]. Furthermore, simple filtering- and
integration algorithms have been considered in [10] for different
measurement setups. A step back from the more and more
fine-grained approaches that rely on motion mode detection, a
simplified and more robust method relying on sensor orientation
tracking, robust step detection with step validation, and heading
estimation is proposed and evaluated in [11].

In contrast to these existing methods, the contributions of
this paper are as follows. First, complete sensor models linking
the phenomena observed by the accelerometer, gyroscope,
and magnetometer to the dynamic motion of the user are
proposed. The developed models are suitable for using in
sequential Bayesian filtering and smoothing techniques such
as Kalman filters. This provides a different approach to PDR,
eliminating the need for step detection and integration. The
proposed approach is then evaluated using real experiments
with a commercially available device.

The remainder of this paper is organized as follows. The
dynamic models and measurement models are developed in
Section II. Estimation using the developed models is presented
in Section III, followed by the experimental evaluation and
discussion presented in Section IV. Some concluding remarks
are given in Section V.

II. MODEL

In this section, the dynamic model describing the (con-
strained) motion of the pedestrian and the proposed observation
model relating the IMU measurements to the dynamic model
are developed.

A. Dynamic Model

In the vast majority of the literature, the pedestrian motion
is modeled using a constant velocity motion model in the
global coordinate system. However, since the motion of the
pedestrian is in most cases in the forward direction as seen978-1-5090-2425-4/16/$31.00 c© 2016 IEEE
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Fig. 1. Illustration of the coordinate system. The global coordinate system is
translated to the coordinate system x′-y′ by the person’s location pGt and then
rotated about the heading ψt to yield the person’s local coordinate system.

from the pedestrian, the proposed model is parametrized as a
constant turn motion model in the x-y-plane with speed vt in
the walking direction and rotation (yaw ψt) around the persons
vertical axis, that is, in the person’s local coordinate frame1

(see Fig. 1). The dynamic equations for the person are then
given by

dpGt
dt

= vGt , (1a)

dvt
dt

= ηv,t, (1b)

dψt
dt

= ωt, (1c)

dωt
dt

= ηω,t, (1d)

where the superscript G indicates the global East-North-Up
(ENU) coordinate frame, and the subscript t denotes continuous
time. pGt ∈ R2 is the position in the x-y-plane, vt ∈ R the
speed which is modeled as a random walk process with ηv,t
being a zero-mean white noise process with covariance Sv.
Furthermore, ψt ∈ R is the heading and ωt ∈ R denotes the
yaw velocity, also modeled as a zero-mean white noise process
ηω,t with covariance Sω. The global velocity vector vGt ∈ R2

is given by

vGt = vt

[
cos(ψt)
sin(ψt)

]
. (2)

Since the IMU is not assumed to be firmly affixed to the
person’s body, it can move freely. While the translation relative
to the person is small (in the range of < 0.5 m) and is assumed
negligible, the attitude of the hand-held smartphone (and thus
the IMU) can vary in three dimensions. The dynamics of the
IMU’s attitude are modeled using a random walk in quaternion
form given by

dqIt
dt

=
1

2
qIt � ηIq,t (3)

where qIt is the IMU’s attitude quaternion relative to the
persons coordinate frame, � denotes the Hamiltonian product
(quaternion multiplication), and ηq,t is the driving white noise

1Clearly, it is possible to account for the principal direction of motion in the
global coordinate system by letting the process noise covariance depend on
the direction of motion. However, the proposed approach here appears more
intuitive.

process with covariance Sq. Note that, depending on the
interpretation of the stochastic differential equation (SDE) (3),
different properties are obtained. If it is interpreted as an
Îto-differential equation, the solution of the SDE might not
preserve the norm constraint of the unit quaternion while the
Stratonovich interpretation does not preserve the norm of the
mean, see [12].

B. Accelerometer Measurement Model

The measured acceleration consists of three components:
1) The person’s acceleration at, 2) the gravitational acceleration
gG, and 3) oscillations caused by the quasi-periodic nature of
the gait cycle, all rotated into the IMU coordinate frame.

The acceleration in the person’s coordinate frame is found
from the derivative of the velocity in the global coordinate
frame vGt as follows

aGt =
dvGt
dt

=
d

dt
vt




cos(ψt)
sin(ψt)

0




= at




cos(ψt)
sin(ψt)

0


+ vtωt



− sin(ψt)
cos(ψt)

0




≈ vtωt



− sin(ψt)
cos(ψt)

0




(4)

where it was assumed that the persons acceleration at ≈ 0
most of the time. Then, rotating aGt into the person’s coordinate
frame yields

aPt = RGPaGt =




0
vtωt

0


 . (5)

The inverse rotation matrix RGP in (5) from the global reference
G frame to the person’s frame P is given by

RGP
t =




cos(ψt) sin(ψt) 0
− sin(ψt) cos(ψt) 0

0 0 1


 . (6)

As indicated above, the swinging nature of the human
gait causes quasi-periodic oscillations in the accelerometer
measurement signal. In the person’s reference frame, the
longitudinal and vertical oscillations (in x- and z-direction,
respectively) are mainly caused by the persons translation
(forward gait), while the oscillations in the person’s y-direction
are caused by the rotation around the persons yaw-axis. One
approach would be to model these oscillations directly in
the measurement model using a Fourier series representation
with unknown Fourier coefficients (two per harmonic). Another
approach is to model the oscillations using stochastic resonators
as in [13]. A stochastic resonator can be described by the
following stochastic differential equation

d

dt

[
αn,t
α̇n,t

]
=

[
0 ω̃n
−ω̃n 0

] [
αt
α̇t

]
+

[
0
1

]
ηα,t. (7)



Thus, the observed pseudo-periodic oscillations in direction
i ∈ {x, y, z} can be modeled as the sum of N i

a stochastic
resonators of the form (7)

ai,Po,t =

Ni
a∑

n=1

αin,t (8)

where N i
a is the number of harmonics to include in the model

(a tuning parameter). The frequency ω̃n = 2πnf0 of the nth
resonator has the fundamental frequency f0 of half the step
frequency

f0 =
|vt|
2ls

(9)

where ls is the step length. Note that the step length ls is
generally unknown and varies from individual to individual
(and possibly even from step to step).

Due to the finite truncation in (8) and unmodeled, possibly
non-linear effects, the model does not explain the observed
measurements entirely. Hence, a model uncertainty term εPa,t
is added. εPa,t is parametrized in the person’s coordinate frame
such that it can account for the different degrees of confidence
in the different models. As for the form of εPa,t, we chose to
represent it using a zero-mean Gaussian random variable with
covariance ΣεPa,t

, that is as

εPa,t ∼ N (0,ΣεPa,t
). (10)

Finally, the complete accelerometer measurement model
is obtained by collecting (5)-(10), adding the gravitational
acceleration gP =

[
0 0 9.81

]>
, rotating everything from

the person’s reference frame into the IMU coordinate frame
and adding measurement noise. This yields

ya,t = qI∗t �
(
gP + aPt + aPo,t + εPa,t

)
� qIt + na,t (11)

where
aPo,t =

[
ax,Po,t ay,Po,t az,Po,t

]>
(12)

and the measurement noise na,t is assumed to be additive,
white Gaussian noise of the form na,t ∼ N (0, Ra).

C. Gyroscope Measurement Model

Similar to the accelerometer measurement model, the gyro-
scope measures the angular rate plus oscillations caused by
the gait cycle. The angular rate (for the person) for in-plane
motion is simply given by the yaw rate and zero pitch and roll
rates, that is,

ωP
t =




0
0
ωt


 (13)

Furthermore, the predominant oscillating motion mainly
manifests as yaw due to the body rotating around its z-axis
while walking. Hence, we define a set of stochastic resonators
analog to (7) as

ωz,P
o,t =

N z
ω∑

n=1

βz
n,t (14)

and assume that
ωx,P
o,t = ωy,P

o,t ≈ 0. (15)

Again, the fundamental frequency is given by (9), βz
n,t is

the nth resonator, and N z
ω is the number of resonators to be

considered.
Additionally, an extra term εPω,t ∼ N (0,ΣεPω,t

) modeling the
model uncertainties in the same way as in (10) is introduced.
This finally yields the complete gyroscope measurement model

yω,t = qI∗t �
(
ωP
t + ωP

o,t + εPω,t
)
� qIt + nω,t (16)

where na,t ∼ N (0, Rω) is measurement noise, and ωP
o,t =[

0 0 ωz,P
o,t

]>
.

D. Magnetometer Measurement Model

The geomagnetic field is well studied and detailed models
for different end purposes exist, see, for example [14]. In this
work, a simple dipole model of the Earth’s magnetic field
is used. The magnitudes for the in-plane (x-y) and radial (z)
magnetic fields are given by

Bxy = B0

(
RE
r

)3

cos(γ) (17a)

and

Bz = −2B0

(
RE
r

)3

sin(γ), (17b)

respectively. In (17), B0 = 31.2 µT is the magnetic field
strength at the equator, RE = 6370 km the mean radius of
the earth, r the radius at the person’s location, and γ the
magnetic latitude. Thus, the magnetic reference vector in the
ENU coordinate frame is

BG =




0
Bxy

Bz


 . (18)

Then, using (18) and the rotation matrix RGP in (6), the
magnetic field vector in the person’s reference frame becomes

BP
t = RGPBG =



Bxy sin(ψt)
Bxy cos(ψt)

Bz


 . (19)

Additionally, since magnetometers most often suffer from
a considerable bias [2], this bias bm is modeled as a random
walk

dbm
dt

= ηb,t (20)

with ηb,t a white noise process with covariance Sb.
Finally, the magnetometer measurement model is then given

by
ym,t = qIt �BP

t � qIt + bm + nm,t (21)

where nm,t ∼ N (0, Rm) is the magnetometer measurement
noise.



E. Discretization

In order to be able to implement the dynamic model, it has
to be discretized. For the person’s dynamic model (1), exact
zero-order hold (ZOH) discretization yields [15]




pxk
pyk
vk
ψk
ωk




=




pxk−1 +
2vk−1 sin(ωk−1

∆t
2 ) cos(ψk−1+ωk−1

∆t
2 )

ωk−1

pyk−1 +
2vk−1 sin(ωk−1

∆t
2 ) sin(ψk−1+ωk−1

∆t
2 )

ωk−1

vk−1

ψk−1 + ωk−1∆t
ωk−1




+wv,k

(22)
where k is the kth sampling instant and ∆t is the time between
the samples k − 1 and k. The noise term wv,k ∼ N (0, Q)
is assumed to be white Gaussian noise where a reasonable
approximation of the covariance matrix Q can be obtained
by first linearizing the system (1) and then using (31) (see
Appendix).

Discretizing the IMU dynamics is more complex. A closed-
form ZOH discretization of the quaternion dynamics for an
arbitrary unit quaternion q with deterministic rotational velocity
ω is given by

qk = Ω(ω)qk−1

with Ω(ω)

Ω(w) = cos

(
‖ω‖∆t

2

)
I4

+




0 −[ω]1 −[ω]2 −[ω]3
[ω]1 0 [ω]3 −[ω]2
[ω]2 −[ω]3 0 [ω]1
[ω]3 [ω]2 −[ω]1 0




sin
(
‖ω‖∆t

2

)

‖ω‖

and [ω]i denotes the ith component of the vector ω. However,
since the IMU rotational velocity is modeled as a random
variable, the above discretization does not strictly hold. Never-
theless, we found it to be a practical approximation and thus,
the discretization for the IMU attitude is approximated as

qIk = Ω(wq,k)qIk−1 (23)

with wq,k ∼ N (0, Qq) and an appropriate choice of Qq .
Finally, the discretized equivalent of the stochastic res-

onator (7) is given by
[
αn,k
α̇n,k

]
=

[
cos(ω̃n∆t) sin(ω̃n∆t)
− sin(ω̃n∆t) cos(ω̃n∆t)

] [
αn,k−1

α̇n,k−1

]
+ wαn,k

(24)
where wαn,k ∼ Qαn is a white, Gaussian random variable
with covariance Qαn (see again in the Appendix).

Summarizing the discretized dynamics in eqs. (22)-(24) and
adding the measurement models (11), (16), and (21) finally
yields the complete discretized state-space model which is of
the form

xk = f(xk−1, wk−1) (25a)
yk = g(xk, nk) (25b)

with

xk =
[
pxk pyk vk ψk ωk qIk bm,k α̃k β̃k

]>

where α̃k is a vector containing all the pairs {αin,k, α̇in,k} ∀ i ∈
{x, y, z}, n ∈ {1, . . . , N i

a} and similar for β̃k. Furthermore,

yk =
[
ya,k yω,k ym,k

]>
.

III. ESTIMATION

The model derived in Section II can now readily be used for
tracking. Note that since some states in both the state dynamics
and observation functions are non-linear, a non-linear filter such
as the extended or unscented Kalman filter (EKF/UKF), or a
particle filter has to be used. Due to the large state dimension,
an unscented Kalman filter is chosen. Note, however, that
since the model has a linear substructure, a Rao-Blackwellized
particle filter [16] would be equally well suited.

A. Norm-Constrained Unscented Kalman Filter
Even though it appears as if a standard unscented Kalman

filter could be used directly, special care has to taken about the
quaternion state qIk. Specifically, it has to be ensured that the
unity of qIk is preserved. Thus, a norm-constrained Kalman filter
where part of the state vector is subject to norm constraints
is required [17], [18]. The algorithm is listed in Algorithm 1
where xk =

[
xuk xck

]>
denotes the complete state vector, and

xuk and xck the unconstrained and constrained part of the state
vector, respectively.

Algorithm 1 (Partially Norm-Constrained Unscented Kalman
Filter).

1) Set x̂0|0 = µ0 and P0|0 = Σ0, k ← 1.
2) Time update:

a) Calculate the sigma points:

P̃ = blkdiag(Pk−1|k−1, Q)

δx =

√
(L+ λ)P̃

Xk−1|k−1 =
[
x̂k−1|k−1 x̂k−1|k−1 + δx x̂k−1|k−1 − δx

]

b) Propagate the sigma points:

[Xk|k−1]1:Nx,i = f([Xk−1|k−1]:,i, [Xk−1|k−1]Nx+1:L,i)

c) Predict the mean and covariance:

x̂k|k−1 =

2L+1∑

i=1

[Wm]i[Xk|k−1]:,i

Pk|k−1 =
2L+1∑

i=1

[Wc]i([Xk|k−1]:,i − x̂k|k−1)

× ([Xk|k−1]:,i − x̂k|k−1)>

3) Measurement update:
a) Calculate the sigma points:

P̃ = blkdiag(Pk|k−1, R)

δx =

√
(L+ λ)P̃

Xk|k−1 =
[
x̂k|k−1 x̂k|k−1 + δx x̂k|k−1 − δx

]



b) Predict the measurement:

[Yk]i = g([Xk|k−1]1:Nx,i, [Xk|k−1]Nx+1:M,i)

c) Calculate the innovation and covariances:

ŷk =
2M+1∑

i=1

[Wm]i[Yk]i

Cxy =

2M+1∑

i=1

[Wc]i([Xk|k−1]1:Nx,i − x̂k|k−1)

× ([Yk]i − ŷk)>

Cyy =
2M+1∑

i=1

[Wc]i([Yk]i − ŷk)([Yk]i − ŷk)>

d) Update the mean and covariance:

Kk = CxyC
−1
yy

x̂k|k = x̂k|k−1 +Kk(yk − ŷk)

Pk|k = Pk|k−1 −KkCyyK
>
k

4) Normalization:

x̂ck|k =

√
l

‖x̂ck|k‖
x̂ck|k

5) Set k ← k + 1 and return to step 2.

In Algorithm 1, L = Nx + Nw is the dimension of the
augmented state in the time update and similarly, M = Nx+Nn
is the dimension of the augmented state in the measurement
update. Furthermore,

[Wm]i =

{
λ

L+λ i = 1
1

2(L+λ) i = 2, . . . , 2L+ 1

and

[Wc]i =

{
λ

L+λ + (1− α2 + β) i = 1
1

2(L+λ) i = 2, . . . , 2L+ 1

are the mean and covariance weights, respectively. α, β, and
κ are filter parameters and

λ = α2(L+ κ)− L.
Finally, the notation [A]i,j refers to the i-th row, j-th column
entry of the matrix A where a semicolon indicates the whole
column (or row).

Note that the only difference between the regular unscented
Kalman filter and its norm-constrained version is step 4 where
the normalization is performed: The constrained states x̂ck|k
can simply normalized after a regular filter update (as it has
been shown that this is equivalent to calculating a constrained
filter gain, see [17], [18]).

B. Initialization

In order to get good performance, good initialization with
proper initial state estimates µ0 is crucial. Thus, strategies for
initializing the state in an appropriate manner are presented
below, where ȳ denotes a batch of initialization data.

1) Position: If some sort of global position information is
available, for example from satellite positioning systems or
Bluetooth beacons, this position information can be used to
initialize the position. Otherwise, nothing can be said about
the global position and it is assumed that px0 = py0 = 0.

2) IMU Attitude: The initial IMU attitude can be estimated
based on the initial accelerometer measurements while static
(i.e. based on the local gravity vector). The pitch and roll
angles of the IMU are then given by

θI0 = atan2 (ȳya, ȳ
z
a) (26a)

and

ϕI
0 = atan2

(
−ȳxa,

√
(ȳya)2 + (ȳza)2

)
, (26b)

respectively. Additionally, the initial yaw ψI
0 with respect to the

user has to be determined. This is not trivial as it is well known
that the yaw angle is unobservable from gravity measurements
only. Instead, we can initialize the yaw angle based on the
(presumed) orientation of the device.

ψI
0 =





0 Landscape
−π Landscape, upside down
−π/2 Portrait
π/2 Portrait, upside down

(26c)

Once all three Euler angles are determined, these can be
converted to the initial attitude quaterinion qI0 using the well-
known conversion rule, see [19].

3) Heading, Magnetic Latitude, and Bias: Once the IMU
attitude is determined, the heading can be estimated from
the initial (calibrated) magnetometer measurements as follows.
First, the initialization data is transformed to the person’s
reference frame as ỹm = RIPȳm and then the heading is found
as

ψ0 = atan2(ỹxm, ỹ
y
m). (27)

Furthermore, the magnetic latitude can be estimated from
the magnitude of the magnetic measurements. Using (17), the
magnitude is found to be

‖B‖ =
√
Bxy2 +Bz2

= B0

(
RE
r

)3√
cos2(γ) + 4 sin2(γ)

= B0

(
RE
r

)3√
1 + 3 sin2(γ)

where the identity cos2(γ) = 1− sin2(γ) was used in the last
step. Solving for γ and replacing the magnitude ‖B‖ with the
observed magnitude ‖ȳm‖ thus yields

γ = asin


 1√

3



(
‖ȳm‖
B0

(
r

RE

)3
)2

− 1




1/2

 . (28)



Finally, an initial estimate of the magnetometer bias can then
be found as

bm = ȳm −RPI



Bxy sin(ψ0)
Bxy cos(ψ0)

Bz


 . (29)

4) Remaining States: Since no measurements of the re-
maining states (velocity, angular velocity, and the stochastic
resonators) are available, these states are simply initialized as
being zero.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated using real
experiments. The experiment setup is described next, followed
by the results and their evaluation.

A. Experimental Setup

The experimental setup was as follows. A test subject was
instructed to normally walk a predefined trajectory, keeping an
LG Nexus 5 smartphone casually in the hand. The data from
the device’s IMU (InvenSense MPU6515) and magnetometer
(AKM AK8963) were then recorded on the device. The
sampling rates were chosen to the highest possible rates which
were 200 Hz for the IMU and 50 Hz for the magnetometer.
In addition to the IMU and magnetometer data, the walked
trajectory was recorded using the built-in Global Positioning
System receiver in order to obtain a reference trajectory. The
data were then processed off-line with the model and UKF as
described in Sections II-III implemented in Matlab.

B. Results

Fig. 2 shows the estimated trajectory together with the GPS
reference path. As it can be seen, the proposed method manages
to capture the overall shape of the trajectory but suffers from
some heading issues. This is especially prominent in the second
half of the trajectory (after the second turn) where there is a
slight bend causing the trajectory to diverge. However, even
after that bend, the trajectory retains the overall true shape
but is slightly rotated, suggesting a bias in the heading from
that point on. Furthermore, the total length of the reference
trajectory (GPS) is 302 m whereas the total length estimated
by the proposed method is 293 m.

The states for translation and orientation are shown in Figs. 3
and 4, respectively. Figs. 3a and 3b show the estimated x-y-
coordinates together with the GPS reference. A first observation
is that the estimated curve appears to start somewhat later,
indicating that it takes some time for the filter to transition
from standing still to moving. Closer inspection revealed that
this delay is about 5 s which, at a speed of 1.5 m/s, corresponds
to 7.5 m. Hence, this could be one possible explanation for
the difference in length to the turn of the two trajectories (see
bottom right corner in Fig. 2). Furthermore, the slope of the
first half of the GPS as well as the estimated are roughly
parallel, indicating that the speed estimate, which averages
around 1.5 m/s (c.a. 5.4 km/h) (Fig. 3c), is reasonable.

3Map data c© OpenStreetMap contributors, see
http://www.openstreetmap.org/copyright.

20m

GPS
Estimated

Fig. 2. Estimated trajectory (green, dashed) together with the GPS reference
path (blue, solid), overlaid onto the local map3.
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Fig. 3. Position- and speed estimates. (a) x-position, (b) y-position, and (c)
speed.
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Fig. 4. Estimated orientation. (a) Heading and (b) rotational velocity.

Similarly, Fig. 4a shows the estimated heading together
with the reference heading calculated by the GPS position
differences. As it can be seen, the headings closely follow each
other in the beginning. After t ≈ 100 s, however, the proposed
method’s heading is somewhat larger than the GPS’ heading
which again corresponds to the divergence observed in Fig. 2.

C. Discussion

The results indicate that the method is feasible. The main
problems observed were a dead-time upon start and a slight
heading drift after a while. The delayed start issue might be
addressed by fine-tuning the filter’s parameters or by extending
the method to use an interacting multiple model approach with
modes for stationarity as well as motion. The heading drift
problem could be mitigated by using a more sophisticated
geomagnetic field model (as it is known that the dipole
model is fairly crude) and taking temporary disturbances such
as bypassing cars or other structures into account. Another
aspect is the fact that the step length has been assumed fixed
and known. As it has been shown in the literature (see, for
example [11], [20]), this should rather be estimated either from
a person’s physical attributes or directly from the measurement
data (which would require some extensions to the measurement
model).

Furthermore, in the performed experiments, the phone was
held in a fairly constant position. While the model is derived to
work with arbitrary orientation and placement, the assumption
of negligible acceleration of the phone itself should not be
violated. Hence, an open question is also how sensitive the
method is to other placements (e.g. back pocket, handbag, etc.)
and dynamic situations where the phone is moved between
different orientations and placements.

The proposed method could easily be extended to make
use of map matching. This would help stabilizing the heading
estimate and would also address scaling issues. Finally, a norm-

constrained unscented Kalman filter was used for estimating
the trajectory. Clearly, more advanced filtering techniques such
as particle filters or the recently developed filters for heavy-
tailed noise [21] have the potential to improve the accuracy
and robustness of the overall PDR system.

V. CONCLUSIONS

In this paper, complete motion- and observation models
for IMU and magnetometer-based pedestrian dead-reckoning
that neither rely on step detection nor zero-velocity updates
have been developed. The experimental results show that the
proposed approach is feasible and possible limitations and
extensions have been pointed out.

Future work will include more tests with arbitrary positioning
of the phone, for example in pockets or handbags, in order to
test the robustness toward these variations. Furthermore, the
issues encountered in the experimental evaluation – heading
drift and somewhat long convergence time – need further
investigation.

APPENDIX

Given the linear dynamic SDE
dx

dt
= Ax+Bη

with the zero-mean, white random process η with covariance
S, ZOH discretization yields

xk = Γxk−1 + wk

where wk ∼ N (0, Q),

Γ = exp(A∆t), (30)

Q =

∫ ∆t

0

exp(A(∆t− τ))BSB> exp(A(∆t− τ))>dτ,

(31)

and exp(At) is the matrix exponential which can, for example,
be calculated using the Laplace transform.

Then, the discretized motion model’s covariance is found
from linearizing the continuous time model and then discretiz-
ing it using (30)-(31). It is given by

Q =

[
QT QTR
Q>TR QR

]
(32)

where

QT = Sv




∆t3 cos2(ψ)
3

∆t3 cos(ψ) sin(ψ)
3

∆t2 cos(ψ)
2

∆t3 cos(ψ) sin(ψ)
3

∆t3 sin2(ψ)
3

∆t2 sin(ψ)
2

∆t2 cos(ψ)
2

∆t2 sin(ψ)
2 ∆t




+ Sr
v2∆t5

20




sin2(ψ) − cos(ψ) sin(ψ) 0
− cos(ψ) sin(ψ) cos2(ψ) 0

0 0 0




QTR = Srv



−∆t4 sin(ψ)

8 −∆t3 sin(ψ)
6

∆t4 cos(ψ)
8

∆t3 cos(ψ)
6

0 0




QR = Sr

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]



For the stochastic resonators, no linearization is necessary.
Hence, (30)-(31) can be used directly and the stochastic
resonators’ covariance matrix becomes

Qαn =
Sαn

2ω̃n

[
ω̃n∆t− sin(2ω̃n∆t) sin2(ω̃n∆t)

sin2(ω̃n∆t) ω̃n∆t+ sin(2ω̃n∆t)

]
.
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[13] S. Särkkä, A. Solin, A. Nummenmaa, A. Vehtari, T. Auranen, S. Vanni,
and F.-H. Lin, “Dynamic retrospective filtering of physiological noise in
BOLD fMRI: DRIFTER,” NeuroImage, vol. 60, no. 2, pp. 1517 – 1527,
2012.

[14] G. Backus, R. Parker, and C. Constable, Foundations of Geomagnetism.
Cambridge University Press, 2005.

[15] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1333–1364, October 2003.

[16] T. B. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear/nonlinear state-space models,” IEEE Transactions
on Signal Processing, vol. 53, no. 7, pp. 2279–2289, July 2005.

[17] R. Zanetti, M. Majji, R. H. Bishop, and D. Mortari, “Norm-constrained
Kalman filtering,” Journal of Guidance, Control, and Dynamics, vol. 32,
no. 5, pp. 1458–1465, 2009.

[18] D. Simon, “Kalman filtering with state constraints: a survey of linear and
nonlinear algorithms,” IET Control Theory Applications, vol. 4, no. 8,
pp. 1303–1318, August 2010.

[19] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Stanford University, Tech. Rep., 2006.

[20] V. Renaudin, M. Susi, and G. Lachapelle, “Step length estimation using
handheld inertial sensors,” Sensors, vol. 12, no. 7, p. 8507, 2012.

[21] F. Tronarp, R. Hostettler, and S. Särkkä, “Sigma-point filtering for
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