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Maximum Likelihood Estimation of the Non-Parametric
FRF for Pulse-Like Excitations

Roland Hostettler, Member, IEEE, Wolfgang Birk, Member,
IEEE, Magnus Lundberg Nordenvaad

Abstract—This paper introduces the closed form maximum likelihood
estimator for estimating the coefficients of the non-parametric frequency
response function from system identification experiments. It is assumed
that the experiments consist of repeated pulse excitations and that both
the excitation and system response are measured which leads to an
error-in-variables setting. Monte Carlo simulations indicate that the
estimator achieves efficiency at low signal-to-noise ratios with only few
measurements. Comparison with the least-squares estimator shows that
better, unbiased results are obtained.

Index Terms—System Identification, Linear Systems, Maximum Like-
lihood Estimation

I. INTRODUCTION

System identification for linear systems is an important and well-
established topic within different engineering fields such as control
engineering. It is often used as a tool for gaining insight into the
dynamic properties of a system under consideration or for model
building, for example for automatic control applications. Thus, it is
not surprising that the field has had a great deal of attention from
the research community during the last decades. Standard textbooks
such as [1] and [2] give thorough introductions from experiment
design to measurement data analysis. It is well understood that in
order to gain as much insight as possible a system should be excited
in a broad frequency range. The excitation signals best suited for
this purpose are white Gaussian random noise or random phase
multisines [3] since these two types have the desired broadband
properties. Random phase multisines are especially useful since
the user can carefully choose parameters such as bandwidth and
excitation frequencies. Furthermore, multisines are very well suited
for detecting nonlinearities in the system [3].

Nevertheless, there are sometimes situations where the practitioner
is limited in how the system can be excited and has to resort to
alternative approaches since it might be impractical to apply an
ideal excitation due to equipment or other limitations. It is thus
not uncommon to apply simple excitations such as pulses or other
non-random excitations instead. Typical applications include the
evaluation of mechanical structures or the response of a biological
system to drug intake. Obviously, this also imposes certain limitations
to the amount of information that can be obtained but nevertheless
this approach might be the only alternative.

When such an approach is used, it is often the case that both
the excitation as well as the system response have to be measured
and thus, both the input and output measurements are noisy which
leads to an error-in-variables setting. While there is a well established
knowledge about how to estimate non-parametric as well as paramet-
ric frequency response functions (FRF) when using random noise
or random phase multisine excitation signals [4]-[6], the analysis of
repeated, possibly non-reproducible, pulse excitation experiments has
gained a lot less attention within the system identification literature,
possibly due to the apparent drawbacks of the excitation signal.
However, the problem is closely related to the problem of linear
regression where both variables are subject to noise, see [7] for a
quick overview. Further, a method for estimating parametric FRFs
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Fig. 1. Error-in-variables system identification setting. The true input signal
u(t) and output signal y(t) are measured as noise-corrupted versions x(t)
and z(t), respectively. The measurment noises are v(t) and w(t).

from a single error-in-variables experiment with non-white input was
proposed in [8].

It is the aim of this technical note to consider system identification
experiments under the circumstances mentioned above. Specifically,
the contribution of this technical note is the hitherto unknown closed
form maximum likelihood estimator for the non-parametric FRF
under the following assumptions:
• The measurement data consists of a set of m = 1, . . . ,M non-

random and periodic (with respect to the measurement window)
input-output signal pairs.

• The input-output measurements are both corrupted by measure-
ment noise.

• The excitation signal may vary between each repetition, that is,
be non-reproducible.

Note that while this problem seems to be of general interest, it has
not yet been treated in the literature.

The estimator is derived in Section II and numerically illustrated
in Section III. Some concluding remarks are given in Section IV.

II. THEORY

Consider the error-in-variables setting as illustrated in Fig. 1 and
assume that a total of M independent experiments are performed
where the input signals are pulses and the true excitations u1(t) 6=
u2(t) 6= · · · 6= uM (t) are different for each experiment. Furthermore,
both the input signal um(t) and output ym(t) are disturbed by noise.
The measured input- and output signals can then be modeled as

xm(n) = um(n) + v(n)

zm(n) = ym(n) + w(n)

= g(n) ∗ um(n) + w(n)

(1)

where the continuous signal is sampled at t = nTs, g(n) denotes
the pulse response of the system, and ∗ the convolution. The additive
noise is assumed to capture effects like thermal noise and other dis-
turbances in the measurement equipment and is assumed to be white
Gaussian noise of the form v(n) ∼ N (0, σ2

v) and w(n) ∼ N (0, σ2
w),

and mutually uncorrelated, that is, E{v(n)w(n)} = 0.
Granted that both the input and output have decayed to zero the

unitary discrete Fourier transform of (1) yields

Xm(ωl) = Um(ωl) + V (ωl)

Zm(ωl) = G(ωl)Um(ωl) +W (ωl)
(2)

for l = 1, . . . , N/2− 1 where

ωl =
2πfsl

N
,

fs = 1/Ts is the sampling frequency and N the number of samples.
Note that if it is ensured that the complete finite-time sequences
xm(n) and ym(n) are measured from rest to rest, leakage errors
can be avoided. However, the finite time pulse will have an infinite
spectrum and hence, aliasing problems may occur if the pulse
duration is chosen badly in relation to the sampling frequency.
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The noise components V (ωl) and W (ωl) in (2) are circular,
complex normal distributed [9] according to

V (ωl) ∼ CN (0, σ2
v) and W (ωl) ∼ CN (0, σ2

w)

For each frequency ωl (ωl will be dropped for the remainder of
the paper) we are now given 2M measurement samples X1, . . . , XM
and Z1, . . . , ZM and M + 1 unknowns

θ =
[
U1 . . . UM G

]T
.

In order to estimate the non-parametric FRF, it is mainly the Fourier
coefficient G that is of interest. Letting

U =
[
U1 . . . UM

]T
,

X =
[
X1 . . . XM

]T
,

Z =
[
Z1 . . . ZM

]T
,

the joint probability density function (PDF) is given by

p (X,Z;θ) = CN
([

X
Z

]
;

[
U
GU

]
,

[
σ2
vIM 0
0 σ2

wIM

])

= CN
([

X
Z

]
;HU,C

) (3)

with

H =

[
IM
GIM

]
and C =

[
σ2
vIM 0
0 σ2

wIM

]

and IM the M ×M identity matrix.
The maximum likelihood estimator (MLE) for θ is then given

by [9]

θ̂ = argmax
θ

−
([

X
Z

]
−HU

)H
C−1

([
X
Z

]
−HU

)

where the superscript H denotes the conjugate transpose. Since the
mean of (3) is linear in U the problem is separable. This in turn
means that the ML estimate Ĝ is found by maximizing the cost [9]

J(G) =

[
X
Z

]H
C−1H

(
HHC−1H

)−1

HHC−1

[
X
Z

]

=

(
X

σ2
v

+
G∗Z

σ2
w

)H (
X

σ2
v

+
G∗Z

σ2
w

)(
1

σ2
v

+
GG∗

σ2
w

)−1

=

(
XHX

(σ2
v)2

+
G∗XHZ+GZHX

σ2
vσ2
w

+
GG∗ZHZ

(σ2
w)2

)

×
(

1

σ2
v

+
GG∗

σ2
w

)−1

.

(4)

The stationary points for (4) are found by setting the derivative
∂J(G)/∂G∗ = 0 where the derivative with respect to a complex
variable is defined as in [10] and the superscript ∗ denotes the
complex conjugate. Then, (4) becomes

∂J(G)

∂G∗
=

(
1

σ2
v

+
GG∗

σ2
w

)−1(
XHZ

σ2
vσ2
w

+
GZHZ

(σ2
w)2

)

− G

σ2
w

(
1

σ2
v

+
GG∗

σ2
w

)−2

×
(
XHX

(σ2
v)2

+
G∗XHZ+GZHX

σ2
vσ2
w

+
GG∗ZHZ

(σ2
w)2

)

= 0

which, after some simplifications, reduces to

0 = G2Z
HX

σ2
w

+G

(
XHX

σ2
v

− ZHZ

σ2
w

)
− XHZ

σ2
v

. (5)

Equation (5) is quadratic in G and hence, there exist two extrema
given by

G1,2 =
−b±

√
b2 − 4ac

2a
(6)

with

a =
ZHX

σ2
w

, b =
XHX

σ2
v

− ZHZ

σ2
w

, and c = −XHZ

σ2
v

.

Unfortunately, it is not trivial to determine which of the two
solutions maximizes (4). On the other hand, it is computationally
cheap to calculate both Ĝ1 and Ĝ2 and then evaluate (4) in order to
determine the solution.

Given the ML estimate Ĝ, the MLE for the excitation signal is
then [9]

Û =
(
HHC−1H

)−1

HHC−1X
∣∣∣∣
G=Ĝ

=

(
1

σ2
v

+
ĜĜ∗

σ2
w

)−1(
1

σ2
v

X+
1

σ2
w

Ĝ∗Z

) (7)

The Cramér-Rao lower bound (CRB) and the asymptotic variance
are given through the Fisher information matrix [9] which is

I(θ) =
[

HHC−1H HHC−1 ∂H
∂G

U

UH
(
∂H
∂G

)H
C−1H UH

(
∂H
∂G

)H
C−1 ∂H

∂G
U

]

=

[(
1
σ2
v
+GG∗ 1

σ2
w

)
IM

1
σ2
w
G∗U

1
σ2
w
GUH 1

σ2
w
UHU

]
.

Using block-wise inversion yields

lim
M→∞

cov{θ̂} = I−1(θ) =

[
[Cθ]11 [Cθ]12
[Cθ]21 [Cθ]22

]
(8)

with

[Cθ]11 =
σ2
vσ

2
w

σ2
w +GG∗σ2

v

(
IM +

σ2
v

σ2
w

GG∗(UHU)−1UUH

)

[Cθ]12 = −σ2
v(U

HU)−1G∗U

[Cθ]21 = −σ2
v(U

HU)−1GUH

[Cθ]22 = (σ2
w +GG∗σ2

v)(U
HU)−1

Finally, the complete non-parametric FRF Ĝ(ωl) is obtained from
the input-output measurements by using the estimators (6)-(8) for
each frequency bin ωl individually.

III. SIMULATION

A. Estimator Properties

First, the estimator’s performance is illustrated using Monte Carlo
simulations. The Fourier transform yields independent coefficients
for the input and output spectra and thus, it is enough to verify the
estimator properties for a single coefficient only.

Since the estimator depends on the input and output noise prop-
erties, the effect of different signal to noise ratios (SNR) on the
performance is analyzed first. The SNRs at the input and output are
defined as

SNRI = 10 log10

(
1
M
UHU

σ2
v

)

and

SNRO = 10 log10

(
1
M
YHY

σ2
w

)
= 10 log10

(
1
M
GG∗UHU

σ2
w

)

First, the input SNR is varied from 20 dB, 10 dB, 0 dB, to −10 dB,
while keeping the output SNR constant at 20 dB. Then, the input SNR
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Fig. 2. Real (top) and imaginary parts (bottom) of the mean of the estimated
Ĝ for varying input SNR of the 1,000 Monte Carlo simulations.
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Fig. 3. Variance of the 1,000 Monte Carlo estimates for Ĝ and CRB (dashed
lines) for varying input SNR.

is kept constant at 20 dB and the output SNR varied from 20 dB,
10 dB, 0 dB, to −10 dB.

The input signal U is chosen such that

UHU =M

and the true value for G as

G =
1√
2
(1 + 1i)

so that the SNR is varied by varying the variances σ2
v and σ2

w. For
each SNR combination, a total of 1,000 Monte Carlo simulations are
performed and the results are averaged accordingly.

1) Varying Input SNR: The mean of the 1,000 Monte Carlo
simulations where the input SNR was varied is shown in Fig. 2.
As expected, the estimator converges to the true value (dashed black
line). Even for an SNR as low as 0 dB, less than M = 10 experiments
are required to obtain an unbiased estimate. For higher SNRs, the
estimator converges even quicker and vice-versa for lower SNRs.

The fast convergence is also reflected in comparing the sample
variance of the simulations to the CRB given by (8) shown in Fig. 3.
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Fig. 4. Real (top) and imaginary parts (bottom) of the mean of the estimated
Ĝ for varying output SNR of the 1,000 Monte Carlo simulations.
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Fig. 5. Variance of the 1,000 Monte Carlo estimates for Ĝ and CRB (dashed
lines) for varying output SNR.

Again, for an SNR of 0 dB, the CRB is attained at around M = 10
experiments where higher SNRs guarantee that the CRB is attained
almost immediately.

2) Varying Output SNR: Fig. 4 illustrates Ĝ as a function of the
number of experiments M for varying SNRs at the output. Clearly,
the estimator is less sensitive to disturbances at the output since fast
convergence is obtained even for an SNR of −10 dB. Similar to the
previous case, less than M = 10 input-output pairs are required to
obtain an unbiased estimate of the FRF coefficient.

Fig. 5 illustrates the sample variance of Ĝ versus the CRB. As it
can be seen from the graph, the CRB is attained immediately even for
very small M and low SNRs. This in turn indicates that the proposed
estimator essentially becomes efficient immediately under the given
conditions.

B. Pendulum Example

Having verified the properties of the estimator in the previous
section, it is now applied to a mass suspended from a moving pivot as
illustrated in Fig. 6. This type of pendulum problem is encountered in
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Fig. 6. Illustration of the pendulum suspended from a moving pivot.

TABLE I
SIMULATION PARAMETERS.

Parameter Symbol Value

Number of Experiments M 10
Sampling Frequency fs 32Hz
Number of Samples N 1024
Excitation Location t0 5 s
Pulse Bandwidth τ 0.25 s and 1 s
Input Measurement Noise σ2

v 1
Output Measurement Noise σ2

w 0.1
Load Mass m 1 kg
Suspension Length L 1m
Friction Constant b 1 kg m2/s

many different applications such as cargo cranes in harbors, hauling
loads using helicopters, or cable cars. The non-linear differential
equation describing the system is given by

Lθ̈ = − b

mL
θ̇ − g sin(θ)− u cos(θ). (9)

In equation (9), m is the mass of the load, L is the length of the
suspension wire, θ is the deflection angle of the pendulum, b is a
friction coefficient in the pivot, g = 9.81m/s2 is the gravitational
acceleration, and u is the acceleration acting at the pivot.

In order to identify the linearized system around the equilibrium
point θ = 0, the system is excited by pulses of the form

um(t) = Am

(
2

πτ2

)1/2

e
−
(
t−t0
τ

)2

(10)

where t0 is a time shift and τ controls the pulse bandwidth. The am-
plitude Am was chosen randomly according to Am ∼ U [0.75, 1.25].
Furthermore, note that we chose (10) such that

‖um(t)‖22 = Am.

This choice allows for easy adjustment of the mean input SNR
through the input noise variance as

E {SNRI} = E

{‖um(t)‖22
σ2
v

}
=

E{‖um(t)‖22}
σ2
v

=
E{Am}
σ2
v

.

The remaining parameters are chosen as listed in Table I. In order
to illustrate different aspects of the method, we will compare two
different experiments: one where we chose a narrow input pulse (τ =
0.25 s) which yields a high input bandwidth and one with a broader
pulse (τ = 1 s) with a lower input bandwidth. Furthermore, we also
compare the proposed estimator to the least squares estimator

ĜLS(ωl) = (XHX)−1XHZ. (11)

Finally, we perform a total of 100 Monte Carlo simulations in order
to analyze the average performance of the estimator.

Fig. 7 shows the estimated FRFs for the proposed maximum likeli-
hood estimator and the least squares estimator when τ = 0.25 s. Also
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Fig. 7. Linearized and estimated non-parametric FRFs for a pendulum with
moving pivot for τ = 0.25 s.
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Fig. 8. Linearized and estimated non-parametric FRFs for a pendulum with
moving pivot for τ = 1 s.

shown is the FRF of the linearized system around the equilibrium
point θ = 0 given by

GLIN = − 1

s2 + s b
mL2 + g

L

.

(Note that the linear approximation holds reasonably well for |θ| ≤
15◦.) As it can be seen from Fig. 7, the maximum likelihood estimator
proposed here is able to capture the dynamics of the considered
system well up to around f ≈ 1Hz. The least squares estimator
does not perform as well and yields a biased estimate of the FRF.
This behavior can readily be verified by looking at (11):

E{ĜLS(ωl)} = E{(XHX)−1XHZ}
= E{(XHX)−1}UHUG

+ E{(XHX)−1VH}UG
6= G.

The same results but for τ = 1 s are shown in Fig. 8. Clearly,
in this case, none of the estimators is capable of reconstructing the
frequency response function. This is, however, due to a poor choice
of the excitation signal and not the estimator itself. Specifically, the
excitation signal used in the second case does not cover all of the
interesting dynamics of the system and hence, the information can not
be extracted. This is also illustrated in Fig. 9 where the spectra of two
excitation signals, one for each case, are shown. As it can be seen, the
bandwidth of the second case (τ = 1 s) is much lower and does not
excite the important dynamics around 0.5Hz well enough. Clearly,
this has to be taken into account when designing the experiment.
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Fig. 9. Comparison of the excitation signals and their spectra. (a) Time-
domain signals, (b) spectra.
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Fig. 10. Cramér-Rao lower bound together with the sample variances for the
maximum likelihood and least squares estimators for τ = 0.25 s.

Finally, the sample variance for ĜML(ωl) as well as ĜLS(ωl)
calculated using the 100 Monte Carlo simulations and the Cramér-
Rao lower bound (CRB) are shown in Fig. 10 for τ = 0.25 s
and Fig. 11 for τ = 1 s. For τ = 0.25 s (Fig. 10), it can be
seen that the variance for the proposed estimator closely follows
the CRB for frequencies where a reasonable SNR (as established in
Section III-A) is obtained. The performance then degrades, once the
excitation signal becomes weaker (lower SNR for these frequencies).
For the least squares estimator, we observe that the sample variance
is below the CRB for all frequencies. This is not surprising since
it is not uncommon for biased estimators to have variances below
the CRB [9]. In the second case (τ = 1 s, Fig. 11), neither of the
estimators achieves the CRB. The reason for the maximum likelihood
estimator not attaining the CRB is again the poor design of the input
signal which yields a too low SNR even in the range of excited
frequencies. As in the case for τ = 0.25 s, the least squares estimator
has a sample variance lower than the CRB due to its biasedness (see
Fig. 8).
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Ĝ
(ω

l)
}

CRB
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Fig. 11. Cramér-Rao lower bound together with the sample variances for the
maximum likelihood and least squares estimators for τ = 1 s.

IV. CONCLUSION

This paper introduced the closed-form maximum likelihood esti-
mator for the non-parametric frequency response function in an error-
in-variables setting. The estimator is based on repeated, possibly non-
reproducible measurements as they may arise in a variety of different
applications.

It has been shown that the estimator converges to the true value and
attains the Cramér-Rao lower bound quickly. In practice, about 10
measurements at input and output signal-to-noise ratios of 0 dB and
20 dB, respectively, are necessary. Furthermore, if the input can be
measured reasonably well, an output SNR of only −10 dB yields
a consistent estimate when using 10 measurements. Comparison
between the proposed MLE and the least-squares estimator showed
that the latter is biased and hence, the MLE is to be preferred.
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