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ABSTRACT

In this paper, we consider parameter estimation in latent, spatio-
temporal Gaussian processes using particle Markov chain Monte
Carlo methods. In particular, we use spectral decomposition of the
covariance function to obtain a high-dimensional state-space rep-
resentation of the Gaussian processes, which is assumed to be ob-
served through a nonlinear non-Gaussian likelihood. We develop a
Rao–Blackwellized particle Gibbs sampler to sample the state tra-
jectory and show how to sample the hyperparameters and possible
parameters in the likelihood. The proposed method is evaluated on a
spatio-temporal population model and the predictive performance is
evaluated using leave-one-out cross-validation.

Index Terms— Gaussian processes, statistical learning, Monte
Carlo methods, parameter estimation

1. INTRODUCTION

Gaussian processes (GP) are a versatile Bayesian non-parametric
modeling approach [1]. They have found widespread applications,
for example in time series modeling in finance [2], meteorology [3],
medical applications [4], and target tracking [5], to name a few.
One well-known disadvantage is that the batch formulation in GP
regression scales cubically with the number of training points. How-
ever, it has recently been shown that stationary, temporal and spatio-
temporal GPs can be transformed into equivalent (infinite dimen-
sional) linear state-space systems by decomposing the GP’s spec-
tral density. This can subsequently be used together with Kalman
filtering and Rauch–Tung–Striebel smoothing [6–8], which greatly
alleviates the computational burden.

In this work, we consider learning (i.e., estimation of the model
parameters) of models where a latent, spatio-temporal process, ob-
served indirectly through some proxy variable, is modeled using a
GP. In particular, we consider models of the form

f(x, t) ∼ GP(m(x, t; θf ), k(x, t, x′, t′; θf )), (1a)
y(t) ∼ p(y(t) | f(x, t), θy), (1b)

where m(x, t) is the GP’s mean function (without loss of gen-
erality assumed to be zero for the remainder of this paper) and
k(x, t, x′, t′) = k(∆x, τ) with τ = t − t′ and ∆x = x − x′ its
stationary covariance function, both parametrized by the hyperpa-
rameters θf . Furthermore, p(y(t) | f(x, t), θy) is the measurement
likelihood, which is parametrized by parameters θy , and t and x
denote the temporal and spatial variables, respectively.

The objective is then to infer the function values fn , f(x, tn)
at times tn (for n = 1, . . . , N ) as well as the parameters θf and
θy based on a set of measurements y1:N = {y1, . . . , yN}. The
most common approach to do this in batch settings is by maximiz-
ing the marginal likelihood of the data p(y1:N | θf , θy) using, for
example, gradient-based methods, or Markov chain Monte Carlo
(MCMC) [1]. These approaches can also readily be employed when
using the equivalent state-space formulations and Kalman filter-
ing [7]. When facing non-Gaussian likelihoods p(yn | fn, θy), one
commonly has to resort to approximations such as expectation prop-
agation or Laplace approximations [9–11]. These may overcome
some of the difficulties involved with nonlinear non-Gaussian like-
lihoods, but introduce approximations to the posterior and may still
be unfeasible for a large number of data points and require further
approximations such as inducing points [12].

In this paper, we propose to use a fully Bayesian approach
based on particle MCMC methods (particle Gibbs with ancestor
sampling, PGAS [13, 14]), which can readily handle arbitrary likeli-
hoods p(yn | fn, θy), together with the state-space representation of
spatio-temporal GPs. This has the advantage of not approximating
the posterior by an (implicitly) assumed density but rather approxi-
mating the true posterior using samples from it, while retaining the
beneficial properties of the state-space formulation. Since the con-
version procedure can yield high-dimensional state-space systems,
Rao–Blackwellization of the conditionally linear substructure is
used to alleviate the computational burden and increase scalability.
The proposed method is conceptually similar to the methods pro-
posed in [15] and [16]; however, it solves a different problem. The
latter methods aim at estimating the parameters in state-space sys-
tems where the dynamic model and observation model are modeled
using GPs, while the method proposed in this work aims at infer-
ring the parameters in GPs on state-space form, observed through a
known likelihood (up to some parametrization θy).

The remainder of this paper is organized as follows. Section 2
briefly reviews the procedure for converting spatio-temporal Gaus-
sian processes to state-space models. The proposed method is intro-
duced in Section 3, followed by numerical illustrations in Section 4.
Some concluding remarks follow in Section 5.

2. CONVERSION OF GAUSSIAN PROCESSES

In this section, we briefly review the procedure for converting sta-
tionary GPs to state-space models. For a more detailed treatment,
the reader is referred to [6–8].

The main idea of the conversion approach is to decompose the
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spectral density of the stationary Gaussian process which is given by
the Fourier transform of the covariance function

k(∆x, τ)⇔ Sf (ωx, ωt)

into a white noise process with spectral density Sw and a linear sys-
tem with frequency response H(iωx, iωt) such that [17]

Sf (ωx, ωt) = SwH(iωx, iωt)H(iωx, iωt)
∗, (2)

where the superscript ∗ denotes the complex conjugate. From the
transfer function H(iωx, iωt) of the linear system, the correspond-
ing infinite dimensional state-space representation can then readily
be found using well known conversion techniques to obtain [7]

ẋ(x, t) = Ax(x, t) +Bw(x, t), (3a)
f(x, t) = Cx(x, t), (3b)
x(x, 0) ∼ N (0, P0), (3c)

where w(x, t) is the white random process with spectral density Sw
as given by the decomposition in (2). Furthermore, A, B, and C
are, in general, a matrix and vectors of linear operators, respectively,
and are given through H(iωx, iωt). The covariance P0 of the initial
state x(x, 0) is given by the solution of the following continuous time
Lyapunov equation

AP0 + P0A
T +BSwB

T = 0. (4)

Finally, discretizing (3) with respect to time yields

xn = Fnxn−1 + qn, (5a)
fn = Cxn, (5b)
x0 ∼ N (0, P0), (5c)

whereFn = exp(A∆t) is the linear operator exponential with ∆t =
tn − tn−1, and qn ∼ N (0, Qn) is white, Gaussian noise with co-
variance operator

Qn =

∫ ∆t

0

exp(A(∆t− τ))BSwB
T exp(A(∆t− τ))Tdτ. (6)

As an example, consider a covariance function composed of the
product of two Matérn kernels kM(·)

k(∆x, τ) = kM(∆x)kM(τ), (7)

with

kM(r) = σ2 21−ν

Γ(ν)

(√
2ν|r|
l

)ν
Kν

(√
2ν|r|
l

)
, (8)

where σ2, l, and ν are the kernel’s hyperparameters, and Kν(·) is
the modified Bessel function of the second kind of order ν.

Using the Fourier transform with respect to τ on (7)-(8) yields

S(∆x, ωt) = kM(∆x)
2σ2√πλ2νt

t Γ(νt + 1/2)

Γ(νt)

×
(
λ2
t + ω2)−νt+1/2

= kM(∆x)
2σ2√πλ2νt

t Γ(νt + 1/2)

Γ(νt)

× (λt + iω)−νt+1/2 (λt − iω)−νt+1/2

(9)

where we have used λt =
√

2νt/lt. Since (7) is a product, (9)
can be converted without involving the spectral density with respect

Algorithm 1 Particle Gibbs Sampler

Input: θ0
f , θ0

y , y1:N

Output: x1:K
0:N , θ1:K

f , θ1:K
y

1: for k = 1, . . . ,K − 1 do
2: Sample xk0:N ∼ p(x0:N | y1:N , θ

k−1
f , θk−1

y )

3: Sample θkf ∼ p(θf | y1:N , x
k
0:N , θ

k−1
y )

4: Sample θky ∼ p(θy | y1:N , x
k
0:N , θ

k
f )

5: end for

to ∆x [6]. Furthermore, from (9) it is clear that the order of the
linear system directly depends on the hyperparameter νt: Whenever
p = νt − 1/2 is a positive integer, the following companion form
state-space representation can be obtained

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1

−λp+1
t −apλpt . . . −a2λ

2
t −a1λt



, (10a)

B =
[
0 . . . 0 1

]T
, (10b)

C =
[
1 0 . . . 0

]
, (10c)

where ai is the ith binomial coefficient of (λt + 1)p+1, and

Sw = kM(∆x)
2σ2λ2νt

t Γ(νt + 1/2)

Γ(νt)
, (10d)

see [6] for details. Note that in this case, A, B, and C do not contain
derivatives with respect to x, which is due to the covariance function
being a product of a spatial and temporal kernel. In general, how-
ever, this is not the case and derivatives may appear for non-product
covariance functions.

Finally, if the decomposition (2) can not be done exactly, it can
be approximated by, for example, using rational approximations of
H(iωx, iωt). Examples for when this is necessary include when
νt − 1/2 in the Matérn covariance is not a positive integer or the
popular squared exponential covariance function [6, 18].

3. STATE AND PARAMETER ESTIMATION

In this section, we develop the proposed approach for estimat-
ing the posterior distribution of the parameters and the state,
p(θf , θy, x0:N | y1:N ). The approach is based on Gibbs sam-
pling and particle MCMC methods (see [13, 19]) where the state
trajectory x0:N , GP hyperparameters θf , and likelihood parame-
ters θy (if any) are sampled in turn, each conditioned on the other
parameters and the data y1:N . This approach has the advantage
of being able to accommodate a broad class of possibly nonlinear
non-Gaussian models and thus can overcome some of the limitations
of approaches maximizing the marginal likelihood p(y1:N | θf , θy),
at the expense of being computationally more demanding compared
to Kalman filtering-based approaches. The basic sampler is shown
in Algorithm 1 and each of its components is discussed below.

3.1. State Sampling

Sampling the states is achieved by using the particle Gibbs with an-
cestor sampling (PGAS) kernel introduced in [13]. The basic idea in



PGAS is to construct a particle filter that approximates the smooth-
ing density p(x0:N | y1:N , θf , θy) (for brevity, we will drop the con-
ditioning on θf and θy throughout the remainder of this subsection)
by generating a set of weighted trajectories {wmN , xm0:N}Mm=1 from
which a new trajectory is sampled with probability wmN . By intro-
ducing an a priori known, deterministic seed trajectory x̄0:N , it can
be shown that the resulting algorithm indeed is an invariant sampler
over p(x0:N | y1:N , θf , θy), see [13] or [19] for details.

As noted in Section 2 the conversion of the GP to state-space
form generally produces an infinite dimensional system. In prac-
tice, this has to be approximated by using a discrete set of training
and prediction points in the spatial domain x. This turns the system
from an infinite dimensional into a high-dimensional system instead.
Thus, the dimensionality becomes challenging when sampling the
states using sequential Monte Carlo methods.

Fortunately, the resulting system (5) exhibits a large linear sub-
structure, which can be exploited. In particular, the states can be
divided into nonlinear states sn (the GP fn at the training points)
and linear states zn (the GP’s derivatives ∂ifn/∂ti at the training
points as well as the prediction points). Thus, the dynamic model
can be written as

p(sn, zn | sn−1, zn−1) (11)

= N
([
sn
zn

]
;

[
gn−1

hn−1

]
+

[
G
H

]
zn−1,

[
Qsn Qszn
Qzsn Qzn

])
,

where gn−1 , g(sn−1) and hn−1 , h(sn−1). Then, Rao–
Blackwellization can be used to reduce the dimensionality of the
state that has to be targeted using Monte Carlo sampling as fol-
lows [20, 21]. Starting from the joint filtering density, we obtain

p(zn, s0:n | y1:n) = p(zn | s0:n, y1:n)p(s0:n | y1:n), (12)

where p(zn | s0:n, y1:n) is analytically tractable using a Kalman fil-
ter and p(s0:n | y1:n) will be the target density for sequential Monte
Carlo sampling. This yields

p(zn, s0:n | y1:n)

≈
M∑

m=1

wmn N (zn; ẑmn , P
z
n)δ(s0:n − sm0:n)

(13)

where δ(·) denotes Dirac’s delta function, sm0:n is the mth marginal
trajectory, wmn the corresponding weight, ẑmn the conditional mean
of the linear states, and P zn their covariance. Note that since neither
Qn norG orH depend on sn−1, the covariance P zn does not depend
on the state trajectory s0:n either.

3.1.1. Linear States

Assume that at time tn−1, the density p(zn−1 | s0:n−1, y1:n−1) is
given by

p(zn−1 | s0:n−1, y1:n−1) = N (zn−1; ẑn−1, P
z
n−1) (14)

and that sn has been sampled. Then, the update for zn reduces to a
Kalman filter prediction

p(zn | s0:n, y1:n) ∝ p(yn | s0:n, zn)p(zn | s0:n, y1:n−1)

∝ p(zn | s0:n, y1:n−1)
(15)

since the likelihood is independent of zn. Considering the joint den-
sity of zn and sn yields

p(zn, sn | s0:n−1, y1:n−1) (16)

=

∫
p(zn, sn | zn−1, sn−1)p(zn−1 | s0:n−1, y1:n−1)dzn−1

= N
([

sn
zn

]
;

[
gn−1

hn−1

]
+

[
G
H

]
ẑn−1, Qn +

[
G
H

]
P zn−1

[
G
H

]T)
.

Thus, by conditioning on sn, it follows that

p(zn | s0:n, y1:n) = p(zn | s0:n, y1:n−1)

= N (zn; ẑn, P
z
n),

(17)

with

ẑn = hn−1 +Hẑn−1 +K(sn − gn−1 −Gẑn−1), (18a)

P zn = Qzn +HP zn−1H
T −KSKT, (18b)

S = Qsn +GP zn−1G
T, (18c)

K = (Qzsn +HP zn−1G
T)S−1. (18d)

3.1.2. Nonlinear States

The marginal density p(s0:n | y1:n) in (12) is targeted using sequen-
tial Monte Carlo sampling. It can be factorized as follows

p(s0:n | y1:n)

∝ p(yn | s0:n, y1:n−1)p(s0:n | y1:n−1)

= p(yn | sn)p(sn | s0:n−1, y1:n−1)p(s0:n−1 | y1:n−1).

(19)

The middle term is the marginalized dynamics for sn and can be
found from

p(sn | s0:n−1, y1:n−1)

=

∫
p(sn | zn−1, sn−1)p(zn−1 | s0:n−1, y1:n−1)dzn−1

= N (sn; gn−1 +Gẑn−1, Q
s
n +GP zn−1G

T). (20)

Note that ẑn−1 depends on the whole trajectory s0:n−1 (see (17))
and hence, so does p(sn | s0:n−1, y1:n−1), which yields a non-
Markovian system.

3.1.3. Ancestor Weights

The final step is to derive the ancestor weights used for sampling the
seed particle’s ancestor trajectory. These are given by [13]

w̄n|N = wn−1
p(s0:n−1, s̄n:N | y1:N )

p(s0:n−1 | y1:n−1)

∝ wn−1p(yn:N | s̄n:N )p(s̄n:N | s0:n−1, y1:n−1)

∝ wn−1p(s̄n:N | s0:n−1, y1:n−1)

= wn−1

N∏

j=n

p(s̄j | s̄n:j−1, s0:n−1, y1:n−1),

(21)

where s̄n:n−1 = {} is the empty set (for j = n). The marginal fu-
ture predictions p(s̄j | s̄n:j−1, s0:n−1, y1:n−1) depend on the com-
plete history of s0:n−1 due to the non-Markovianity introduced by



the marginalization. However, they can be calculated recursively as
follows. First, note that

p(s̄j | s̄n:j−1, s0:n−1, y1:n−1)

=

∫
p(s̄j | zj−1, s̄j−1)

× p(zj−1 | s̄n:j−1, s0:n−1, y1:n−1)dzj−1.

(22)

The second term of the integrand in (22) can be found from the
joint density

p(zj−1, s̄j−1 | s̄n:j−2, s0:n−1, y1:n−1)

=

∫
p(zj−1, s̄j−1 | zj−2, s̄j−2)

× p(zj−2 | s̄n:j−2, s0:n−1, y1:n−1)dzj−2,

(23)

where p(zj−2 | s̄n:j−2, s0:n−1, y1:n−1) is the same density at j−2.
Thus, assuming that

p(zj−2 | s̄n:j−2, s0:n−1, y1:n−1) = N (zj−2; z̄j−2, P̄
z
j−2), (24)

it follows that p(zj−1, s̄j−1 | s̄n:j−2, s0:n−1, y1:n−1) is as in (16)
but with z̄j−1 and P̄ zj−1. Conditioning on s̄j−1 then yields the same
update as in (17)–(18). Finally, this yields

p(s̄j | s̄n:j−1, s0:n−1, y1:n−1)

= N (s̄j ; gj−1 +Gz̄j−1, Q
s
j +GP̄ zj−1G

T),
(25)

and the recursion is initialized with z̄n−1 = ẑn−1, P̄ zn−1 = P zn−1.
In practice, evaluating (21) for the whole future time horizon

from n to N and for each time step and particle is impractical, due
to the computational complexity. Hence, we propose to make use of
the approximation suggested in [13] based on the fact that the state
s̄n+N̄ for n + N̄ � n only weakly correlates with sn−1. Hence,
we can truncate (22) at some point n+ N̄ ≤ N without introducing
significant bias.

Finally, once a new trajectory sk0:N has been sampled, smooth-
ing the linear states is achieved by using a Rauch–Tung–Striebel
smoothing pass [22]. This results in the method summarized in Al-
gorithm 2, where π(an | s0:n−1, y1:n) and π(sn | sa

m
n

0:n−1, y1:n)
denote the proposal densities for the ancestor weights and nonlinear
states, respectively.

3.2. GP Hyperparameter Sampling

The second step in Algorithm 1 is to draw new samples of the GP’s
hyperparameters from p(θf | y1:N , x0:N , θy). First, note that

p(θf | y1:N , x0:N , θy) = p(θf | x0:N ) (26)

due to the fact that, conditionally on the complete state trajectory
x0:N , θf is independent of y1:N and θy . Rewriting the posterior
p(θf | x0:N ) then yields

p(θf | x0:N ) ∝ p(θf )p(x0:N | θf )

= p(θf )p(x0 | θf )
N∏

n=1

p(xn | xn−1, θf ).
(27)

The densities p(x0 | θf ) and p(xn | xn−1, θf ) are given by (5c) and

p(xn | xn−1, θf ) = N (xn;Fnxn−1, Qn), (28)

respectively, where the latter follows from (5a).

Algorithm 2 Rao–Blackwellized PGAS
Input: Trajectory s̄0:N

Output: Trajectory xk0:N

1: Sample sm0 ∼ N (0, P s0 ) for m = 1, . . . ,M − 1 and set sM0 =
s̄0

2: Set ẑm0 = P zs0 (P s0 )−1sm0 , P z0 = P z0 − P zs0 (P s0 )−1P sz0 , and
wm0 = 1/M for m = 1, . . . ,M

3: for n = 1, . . . , N do
4: Sample amn ∼ π(an | s0:n−1, y1:n) for m = 1, . . . ,M − 1

5: Sample smn ∼ π(sn | sa
m
n

0:n−1, y1:n) for m = 1, . . . ,M − 1

6: Set sMn = s̄Mn
7: Calculate the ancestor weights w̄mn|N using (22)–(25)
8: Sample aMn ∼ C({w̄i}Mi=1)
9: Calculate ẑmn and P zn according to (18)

10: Set sm0:n = {sa
m
n

0:n−1, s
m
n }

11: Calculate the particle weights

wmn ∝ wa
m
n
n−1

p(yn | smn )p(smn | sa
m
n

0:n−1, y1:n−1)

π(amn | s0:n−1, y1:n)π(smn | sa
m
n

0:n−1, y1:n)

12: end for
13: Sample sk0:N ∼ C({wmN }Mm=1)
14: Calculate p(zk0:N | sk0:N , y1:N ) using a Rauch–Tung–Striebel

smoother

Depending on how the hyperparameters θf enter (27), it may be
possible to sample all or a subset of θf from p(θf | x0:N ) directly
(with an appropriate prior). If this is not possible, we note that (27)
can readily be evaluated numerically (up to proportionality). Thus, a
Metropolis-within-Gibbs approach can be used in this case to sample
θf (or a subset thereof).

3.3. Likelihood Parameter Sampling

Finally, the third step is to sample the likelihood’s parameters θy .
Similar to the previous section, p(θy | y1:N , x0:N , θf ) can be written
as

p(θy | y1:N , x0:N , θf ) = p(θy | y1:N , x0:N )

∝ p(y1:N | x0:N , θy)p(θy)

∝ p(θy)
N∏

n=1

p(yn | xn, θy)

(29)

where the first equality is due to the independence of θy on θf given
x0:N .

Depending on the likelihood p(yn | xn, θy), it is often possible
to sample from (29) directly. For example, when the likelihood con-
sists of additive Gaussian noise and the noise variance is unknown,
the conjugate prior can be used for θy to obtain a closed form solu-
tion for the posterior, from which we can draw samples. If this is not
possible, we can still resort to a Metropolis-within-Gibbs approach
as discussed in the previous section.

4. NUMERICAL ILLUSTRATIONS

To illustrate the proposed method, we consider a spatio-temporal
population regression problem.



4.1. Setup

We model the logarithm of a time-varying population rn in an area
as a Gaussian process, that is, fn ∼ GP(0, k(∆x, τ)) where fn =
log(rn). As for the covariance function, we use the covariance func-
tion k(∆x, τ) = kM (∆x)kM (τ) discussed in Section 2 and assume
known orders νx = 3.5 and νt = 4.5. The unknown GP parameters
are thus the length scales lx and lt, and the variance σ2.

The population size measurements for the jth location xj (j =
1, . . . , J) at time tn are assumed to be Poisson distributed according
to the likelihood

yj,n ∼ P(exp(fj,n)),

where P(·) denotes the Poisson distribution and fj,n , fn(xj) is
the population’s logarithm at the jth location xj .

The simulation data at each location is generated from a Ricker
model [23] given by

rj,n = rj,n−1 exp
(
ρ
(

1− rj,n−1

κ
+ ej,n

))
,

where ej,n is the process noise with Cov{ei,nej,n} = σ2
ij , ρ = 0.1

is the intrinsic growth rate, and κ = 100 the environmental carrying
capacity.

In total, N = 1000 time samples in an area of 40 km by 20 km
at 8 locations (separated by 10 km) are simulated. The performance
of the proposed algorithm is evaluated by leave-one-out cross-
validation and calculating the time-averaged root mean squared
error for the prediction at the test location. This yields a total of
7000 training points and 1000 test points.

In total, 200 MCMC samples are drawn, of which 100 are dis-
carded as burn-in. For the particle filter, M = 2000 particles are
used. The ancestor indices are sampled according to the particle
weight at time n − 1 (i.e. an ∼ C{wmn−1}Mm=1) while the bootstrap
proposal p(sn | s0:n−1, y1:n−1) (20) is used for sn. Finally, N̄ = 1
was chosen (without noticeable performance degradation).

4.2. Parameter Sampling

In this scenario, the unknown parameters are θf =
[
lx lt σ2

]T
with no unknowns in the likelihood. First, note that the Lyapunov
equation (4) can be solved analytically in this case and P0 can be
written as

P0 = σ2P̃0

where P̃0 is independent of σ2. Similarly, from (6) it can be seen
that Qn can be written as

Qn = σ2Q̃n.

Thus, it follows from (27)–(28) that

p(σ2 | lt, lx, x0:N )

∝ p(σ2)N (x0; 0, σ2P̃0)
N∏

n=1

N (xn;Fnxn−1, σ
2Q̃n).

Using the inverse Gamma prior p(σ2) = IG(σ2;α, β) with prior
parameters α and β yields the posterior

p(σ2 | lt, lx, x0:N ) = IG(σ2; α̃, β̃)

with posterior parameters

α̃ = α+
NNx

2
,

β̃ = β +
1

2
‖x0‖2P̃−1

0
+

1

2

N∑

n=1

‖xn − Fnxn−1‖2Q̃−1 ,
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Fig. 1. Prediction example with true trajectory ( ) simulated
from a Ricker model, together with the MMSE estimate ( ),
and the sampled trajectories ( ) for the time period n =
100, . . . , 200.

where ‖x‖2C = xTCx and Nx is the state dimension. Thus, sam-
pling σ2 in this example can be done efficiently by sampling from
the posterior.

Sampling the length scales lx and lt can not be done directly
as they enter the model in a more complicated way (see Section 2).
Hence, we use the Metropolis-within-Gibbs approach as discussed
in Section 3.

4.3. Results and Discussion

The mean of the time-averaged RMSEs of the leave-one-out cross-
validation for the presented scenario is 8.86 (±2.47). An example
for the predicted population for the time between n = 100 and n =
200 is shown in Fig. 1. The illustration depicts the true population
over time (blue, solid), the sampled trajectories (grey, solid), as well
as the minimum mean squared error (MMSE) estimate (red, dashed).
As it can be seen, the sampled trajectories are distributed around
the true state and the MMSE estimate matches the true trajectory
well. The RMSE is 6.21 in this case, which is somewhat lower than
the mean RMSE. Furthermore, Fig. 2 shows the histograms of the
corresponding parameter samples.

The example shows that the learned model exhibits good predic-
tive performance based on the estimated parameters and trajectories.
A major challenge that remains is the scalability of the proposed
method with respect to the number of spatial training points: The
dimension of the nonlinear state sn grows linearly with the number
of spatial training points, which in turn increases the number of par-
ticles required for sampling the state trajectories sk0:N . Experiments
showed that for a low number of points (e.g. 2–3), as few as 100
particles can be enough to accurately learn the system and generate
predictions, while, at around 10 to 15 spatial training points, several
thousand particles are required, slowing down the learning. Note,
however, that increasing the number of temporal training points does
not affect the state dimension, and only increases the number of time
samples to be processed.

5. CONCLUSIONS

In this paper, we proposed a particle MCMC method for estimating
the posterior distribution of the state and parameters in latent, spatio-
temporal Gaussian process regression problems. As shown in the il-
lustrations, the proposed method can handle nonlinear non-Gaussian
likelihoods, which can be a limiting factor for other methods. For
problems with a moderate to large number of spatial training points,
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Fig. 2. Histograms of the hyperparameter samples: The temporal
length scale lt (top), variance σ2 (middle), and spatial length scale
lx (bottom).

scaling can become an issue as the number of required particles in
such scenarios increases quickly.
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