
Auxiliary-Particle-Filter-Based Two-Filter Smoothing for

Wiener State-Space Models

Roland Hostettler and Thomas B. Schön

This is a post-print of a paper published in 21th International Conference on Information Fusion
(FUSION). When citing this work, you must always cite the original article:

R. Hostettler and T. B. Schön, “Auxiliary-particle-filter-based two-filter smoothing for
Wiener state-space models,” in 21th International Conference on Information Fusion
(FUSION), Cambridge, UK, July 2018

DOI:

10.23919/ICIF.2018.8455323

Copyright:

Copyright 2018 ISIF.

http://dx.doi.org/10.23919/ICIF.2018.8455323

Auxiliary-Particle-Filter-based Two-Filter
Smoothing for Wiener State-Space Models

Roland Hostettler∗ and Thomas B. Schön†
∗Department of Electrical Engineering and Automation, Aalto University, Finland

E-Mail: roland.hostettler@aalto.fi
†Department of Information Technology, Uppsala University, Sweden

E-Mail: thomas.schon@it.uu.se

Abstract—In this paper, we propose an auxiliary-particle-
filter-based two-filter smoother for Wiener state-space models.
The proposed smoother exploits the model structure in order
to obtain an analytical solution for the backward dynamics,
which is introduced artificially in other two-filter smoothers.
Furthermore, Gaussian approximations to the optimal proposal
density and the adjustment multipliers are derived for both
the forward and backward filters. The proposed algorithm is
evaluated and compared to existing smoothing algorithms in a
numerical example where it is shown that it performs similarly
to the state of the art in terms of the root mean squared error
at lower computational cost for large numbers of particles.

Index Terms—Sequential Monte Carlo, particle filtering, state
estimation, state-space models, state-space methods, Wiener mod-
els.

I. INTRODUCTION

Sequential Monte Carlo (SMC) methods, including particle
filters and smoothers, are a popular approach for solving the
Bayesian filtering and smoothing problems arising in nonlinear,
non-Gaussian systems that are analytically intractable [1], [2].
In the filtering problem, the objective is to find the posterior
distribution of the state xn ∈ RNx at time tn (or the state
trajectory x1:n = {x1, . . . , xn} up to tn) given the observations
y1:n = {y1, . . . , yn} (where yn ∈ RNy), that is, finding p(xn |
y1:n) (or p(x1:n | y1:n)). Similarly, smoothing is concerned
with finding the posterior distribution of the state xn (or the
trajectory x1:N) given a batch of data y1:N for 1 ≤ n ≤ N ,
that is, finding p(xn | y1:N) (or p(x1:N | y1:N)) [2], [3].

Particle filters and smoothers have successfully been em-
ployed in a variety of applications, see, for example [4]–[8].
Nevertheless, one of the main challenges of these methods
is that they scale poorly in terms of dimensionality, meaning
that systems with large state dimension Nx require a large
number of Monte Carlo samples M (referred to as the curse
of dimensionality) [9]. This is particularly problematic for
smoothing, which often scales worse with respect to M
compared to filtering. Approaches to mitigate this issue include
the construction of better proposals that manage to keep the
particles in the relevant area of the state-space [10]–[13] or
exploiting the model structure, for example, by using Rao–
Blackwellization in conditionally linear Gaussian state-space
models [14]–[16].

Another class of models where we can exploit the structure
are Wiener state-space models [17], consisting of linear,

Gaussian dynamics and nonlinear observations of the form

xn = Anxn−1 + εn, (1a)
yn = gn(xn, rn), (1b)
x0 ∼ N (µx0 ,Σ

x
0), (1c)

where An is the state transition matrix, εn ∼ N (0, Qn) is the
process noise and N (µ,Σ) denotes the multivariate Gaussian
density with mean µ and covariance Σ, gn(·) is the nonlinear
observation function, and rn ∼ p(rn) is measurement noise.

In this paper, we will show how to exploit the structure in
the model (1) in order to obtain analytical expressions for the
backward dynamics, which yields a two-filter smoother [18]
that does not rely on artificially introduced backward dynamics
as required by the currently known two-filter smoothers [19],
[20]. The proposed smoother uses forward and backward filters
that are based on the auxiliary particle filter (APF) [10] which
has the advantageous property of concentrating the particles
in areas of high probability. Since the measurement model is
nonlinear, the optimal proposals are analytically intractable
and we instead propose to use Gaussian approximations using
moment matching [11], [21], [22]. The main advantages of
the proposed method are: 1) The backward filter exploits the
structure inherent in the model to obtain a suitable importance
distribution; and 2) the computational complexity is reduced
thanks to efficient implementation. The method presented
here is an extension of the earlier work in [23]. The main
improvements are that we develop a more robust algorithm
based on the (approximately) fully adapted auxiliary particle
filter. Furthermore, both the forward and backward filtering
stages are discussed in more detail, a complexity analysis
is included, and more thorough numerical illustrations and
comparisons are provided.

II. RELATED WORK

The most basic smoother is obtained by running a particle
filter targeting the joint filtering distribution over the complete
data y1:N [24]. This approximation of the smoothing density
is of limited use, since the particle filter produces degenerate
state trajectories. This means that for long time series, all
particles at tN will have one (or at best a few) common
ancestor(s) [2], [24], [25]. However, the marginal filtering

approximations obtained from a particle filter can be used in a
backward pass similar to the Rauch–Tung–Striebel smoother for
linear systems [26]. This yields the forward filtering backward
smoothing method which reweighs the filtered particles in
the backward pass. Unfortunately, the resulting algorithm
scales poorly, namely according to O(M2N), which renders
it prohibitive for anything but low numbers of particles M [2].

The forward filtering backward simulation (FFBSi)
smoother [2], [27] is based on first running a particle filter
forward in time, which generates a set of MF (degenerate)
weighted forward trajectories. This is followed by a simulation
pass backwards in time where a partial trajectory xjn+1:N is
extended with a new sample xmn from the forward filtering
approximation at time tn such that xjn:N = {xmn , xjn+1:N}.
Extending the trajectory is achieved by sampling from a cate-
gorical distribution where the weights for xmn are proportional
to p(xjn+1 | xmn). This requires evaluation of p(xjn+1 | xmn) for
each m ∈ 1, . . . ,MF . Thus, when generating MS backward
trajectories, this requires O(MSMF) evaluations at each time
step tn. However, noting that only one particle is used for
extending each trajectory, rejection sampling can be used to
replace direct sampling from the categorical distribution [28].
In theory, this greatly alleviates the computational burden,
however, in practice, it might suffer from high rejection rates.
If this is the case, a solution is to fall back to the original
exhaustive search [29]. Further approaches to relieve the
computational burden in FFBSi include Rao–Blackwellization
of analytically tractable substructures [16] or combining the
FFBSi smoother with Markov Chain Monte Carlo (MCMC)
moves in the backward simulation pass [30], [31].

Another approach to smoothing is based on a two-filter
formulation [32], [33]. Here, the smoothing density is factorized
in a way that makes it possible to decouple the smoothing
problem into two filters, a regular filter processing the data
forward in time and an information filter running backward in
time, followed by a combination of the two filters which finally
yields the smoothing density approximation. A problem here
is that due to the nonlinearity in the process model, carefully
selected artificial importance densities have to be introduced
for the backward filter [19], [20], [22], [24], [34]–[36].

The algorithm by Kronander et. al. [37] uses a third way
of factorizing the marginal smoothing density. Similarly to
the FFBSi smoother, a particle filter is run in the forward
direction and the particles produced by that filter are resampled
in a backward pass. However, unlike the FFBSi smoother,
the marginal smoothing distribution is approximated using a
weighted set of particles where the weight is proportional to
the transition density between the particle at time tn and an
ancestor particle at tn+1. This yields a fast smoother, which,
however, suffers from a slight bias under certain conditions [37].

Particle MCMC smoothers differ quite significantly from
the smoothers discussed so far [38]. In these approaches,
a Gibbs or Metropolis–Hastings sampler is constructed that
essentially produces complete trajectory samples x1:N from the
joint smoothing distribution p(x1:N | y1:N). MCMC smoothers
based on the Gibbs sampler use a conditional particle filter

to sample the trajectories, which ensures that the resulting
Markov chain is invariant [38]. To improve convergence, mixing
inside the conditional particle filter, and hence, reduce burn-in,
further modifications such as ancestor sampling have been
introduced [31], [39]–[42].

Finally, an online approach to smoothing was proposed
in [43], [44]. In contrast to the methods discussed so far,
this approach does not approximate the smoothing density.
Instead, it estimates smoothed expectations of functionals
of the state using SMC. The resulting algorithm has linear
computational complexity and can run online since it does not
require processing the data in the reverse temporal direction.

III. AUXILIARY PARTICLE FILTER

In this section, the auxiliary particle filter (APF) [10] is
reviewed to lay the foundation for the coming derivations.

The APF introduces an auxiliary variable that makes
the stochastic nature of the resampling step in sequential
importance resampling explicit. Assume that we are given
the particle approximation of the joint filtering distribution
p(x1:n−1 | y1:n−1) at time tn−1

p(x1:n−1 | y1:n−1) ≈
M∑

m=1

wmn−1δ(x1:n−1 − xm1:n−1)

, p̂(x1:n−1 | y1:n−1),

(2)

where xm1:n−1 and wmn−1 denote the mth particle and its
weight, δ(·) is the Dirac delta function, and p̂(·) is the particle
approximation of the density p(·). The marginal filtering density
is readily obtained by marginalizing (2) with respect to x1:n−2.
Hence, for simplicity, we will work with the joint filtering
density for the remainder of this work.

During resampling, when going from time tn−1 to time tn,
the particles are resampled such that

Pr{x̄in−1 = xmn−1} = wmn−1,

where x̄in−1 denotes the resampled particle. The randomness
of this step is made explicit by introducing the auxiliary
variable (referred to as the ancestor index) αn drawn from the
categorical distribution of the weights C({wmn−1}Mm=1)

αin ∼ C({wmn−1}Mm=1)

and letting the resampled particle

x̄in−1 ← x
αi

n
n−1.

However, in the APF we actually go one step further and
consider a more generic proposal distribution for αn that
also takes the latest measurement yn into account in order
to resample the most likely particles. To this end, so-called
adjustment multipliers f(xn−1, yn) are introduced such that

vmn ∝ wmn−1f(xmn−1, yn) (3)

and then draw the auxiliary variables from the categorical
distribution of the modified weights C({vmn }Mm=1) as

αin ∼ C({vmn }Mm=1). (4)

Algorithm 1 Auxiliary Particle Filter (APF)
1: Sample xm0 ∼ p(x0) and set wm0 = 1/M
2: for n = 1, . . . do
3: Sample αmn ∼ q(αn | xmn−1, yn)
4: Sample xmn ∼ q(xn | αmn , xmn−1, yn)
5: Calculate and normalize the importance weights

w̃m = wmn−1
p(yn | xmn)p(xmn | xmn−1)

q(xmn | αmn , xmn−1, yn)q(αmn | xmn−1, yn)

wmn =
w̃m

∑M
k=1 w̃

k

6: end for

Thus, when targeting the joint filtering density

p(x1:n | y1:n) ∝ p(yn | xn)p(xn | xn−1)p(x1:n−1 | y1:n−1)

we search for a joint importance density that factorizes as

q(x1:n, α1:n | y1:n)

= q(xn, αn | xn−1, yn)q(x1:n−1, α1:n−1 | y1:n−1)

= q(xn | αn, xn−1, yn)q(αn | xn−1, yn)

× q(x1:n−1, α1:n−1 | y1:n−1),

(5)

with q(αn | xn−1, yn) according to (3)–(4). Hence, the
importance weights become

wmn =
p(xm1:n | y1:n)

q(xm1:n, α
m
1:n | y1:n)

= wmn−1
p(yn | xmn)p(xmn | xmn−1)

vmn q(x
m
n | αmn , xmn−1, yn)

.

(6)

It is well known that the optimal (in the sense of minimum
weight increment variance) choices for the proposal q(xn |
αn, xn−1, yn) and the adjustment multipliers are [10], [45]

q(xmn | αmn , xmn−1, yn) = p(xmn | x
αm

n
n−1, yn), (7a)

f(xmn−1, yn) = p(yn | xmn−1), (7b)

which reduce the importance weights to 1/M . This yields the
fully adapted APF summarized in Algorithm 1.

IV. FILTERING

Having introduced the general APF in Section III, this
section shows how the filter can be applied to models of
the form (1) to target the joint filtering density p(x1:n | y1:n).
In particular, suitable approximations of the optimal proposal
and the adjustment multipliers are derived using the general
framework of moment matching, which can be solved using
techniques such as linearization or sigma-point integration [46],
[47]. Much of the developments in this section will be reused in
deriving the backward filter and the smoother in the following
section. In this section, the subscript n | 1 : n is used for
particles and their weights in order to indicate the forward
filtering particle system while the subscripts n | n−1 and n | n
are used to indicate conditioning on xn−1 and yn, respectively.

It can be seen from (1) that closed-form expressions for
the optimal proposal and adjustment multipliers can not be

derived for state-space models of the Wiener-type. Thus, we
propose to approximate the joint distribution p(xn, yn | xn−1)
as a Gaussian distribution and use this as an approximation
of the optimal proposal distribution. This will exploit the
fact that the state dynamics are linear and Gaussian, see (1a).
Note, however, that other approximations such as, for example
Gaussian mixtures [48], are possible and might be better suited
for certain problems (e.g. when the likelihood is multi-modal).

In order to develop the approximate proposal distribution,
consider the following Gaussian approximation of the joint
density of xn and yn given xn−1

p(xn, yn | xn−1)

≈ N
([
xn
yn

]
;

[
Anxn−1
µyn|n−1

]
,

[
Qn Bn|n−1

BT
n|n−1 Sn|n−1

])

, p̃(xn, yn | xn−1),

(8)

where p̃(·) denotes the Gaussian approximation of the density
p(·). The mean µyn|n−1 and the covariances Bn|n−1 and Sn|n−1
can be found through moment matching [3], [21] using

µyn|n−1 = E{yn}, (9a)

Bn|n−1 = E{(xn −Anxn−1)(yn − µyn|n−1)T}, (9b)

Sn|n−1 = E{(yn − µyn|n−1)(yn − µyn|n−1)T}, (9c)

where the expectations are with respect to p(xn, rn | xn−1) =
p(xn | xn−1)p(rn) and p(rn) denotes the density of the
measurement noise as defined in (1).

Conditioning the approximation in (8) on yn yields [3]

p̃(xn | xn−1, yn) = N (xn;µxn|n, C
x
n|n)

, q(xn | xn−1, yn),
(10)

with

µxn|n = Anxn−1 +Bn|n−1S
−1
n|n−1(yn − µyn|n−1), (11a)

Cxn|n = Qn −Bn|n−1S−1n|n−1BT
n|n−1. (11b)

Similarly, an approximation for p(yn | xn−1) is found by
simply marginalizing (8) with respect to xn which yields

p̃(yn | xn−1) = N (yn;µyn|n−1, Sn|n−1). (12)

Using these approximations, the particle weights (6) become

wn|1:n ∝ wn−1|1:n−1
p(yn | xn)p(xn | xn−1)

vn−1|1:n−1q(xn | xn−1, yn)

∝ wn−1|1:n−1
p(yn | xn)p(xn | xn−1)

wn−1|1:n−1p̃(yn | xn−1)

× p̃(yn | xn−1)

p̃(yn | xn, xn−1)p̃(xn | xn−1)

=
p(yn | xn)

p̃(yn | xn, xn−1)
,

(13)

where the last equality is due to the fact that p̃(xn | xn−1)
is exact. The density p̃(yn | xn, xn−1) is obtained by
conditioning (8) on xn and it is given by

p̃(yn | xn, xn−1) = N (yn;µyn|n−1:n, C
y
n|n−1:n), (14)

Algorithm 2 Forward Filter Iteration
1: Calculate the moments µy,mn|n−1, Bmn|n−1, and Smn|n−1

according to (9) with xn−1 = xmn−1
2: Calculate and normalize the auxiliary variable probabilities

v̄m = wmn−1|n−1N (yn;µy,mn|n−1, S
m
n|n−1)

vmn|n =
v̄m

∑M
k=1 v̄

k

3: Sample αmn ∼ C({vkn|n}Mk=1)

4: Calculate µx,mn|n and Cmn|n according to (11)

5: Sample xmn ∼ N (µ
x,αm

n

n|n , C
αm

n

n|n)

6: Calculate µy,mn|n−1:n and Cy,mn|n−1:n according to (15) using

µy,α
m

n|n−1, Bα
m

n|n−1, xmn , and xα
m

n−1
7: Calculate and normalize the particle weights

w̄m =
p(yn | xmn)

N (yn;µy,mn|n−1:n, C
y,m
n|n−1:n)

wmn|n =
w̄m

∑M
k=1 w̄

k

with

µyn|n−1:n = µyn|n−1 +BT
n|n−1Q

−1
n (xn −Anxn−1), (15a)

Cyn|n−1:n = Sn|n−1 −BT
n|n−1Q

−1
n Bn|n−1. (15b)

Finally, one iteration of the complete approximate fully
adapted APF is summarized in Algorithm 2. Equations (10)–
(12) and (14) provide the approximations of the distributions
required by the APF for each particle. Thus, the mean µyn|n−1 as
well as the covariance matrices Bn|n−1 and Sn|n−1 have to be
calculated using (9) for every particle xmn−1 (m = 1, . . . ,M).

To use Gaussian approximations for the optimal importance
density and adjustment multipliers is a standard approach
in particle filtering [11], [22]. A challenge is that in most
cases, the integrals (9) can not be evaluated in closed-form.
Instead, they need to be approximated using well-known
techniques commonly used in Kalman filtering such as sigma-
point methods (unscented transform, spherical cubature, Gauss–
Hermite quadrature, etc.) or linearization, see [3], [11], [21].

V. SMOOTHING

In this section, the two-filter formulation is first reviewed and
then, a backward filter similar to the forward filter is developed.
Finally, the two filters are combined to obtain the smoother.

A. Two-Filter Smoothing

The general two-filter smoothing formulation is [18], [24]

p(xn | y1:N) ∝ p(xn | y1:n−1)p(yn:N | xn), (16)

where the predictive density can readily be obtained from a
forward filter. The second term, p(yn:N | xn), is unfortunately

not a probability density in xn. However, it can be further
reformulated using Bayes’ rule, resulting in [18], [23]

p(yn:N | xn) ∝ p(xn | yn:N)

p(xn)

=
1

p(xn)

∫
p(xn:N | yn:N)dxn+1:N ,

(17)

where p(xn | yn:N) is the backward filtering density which
can be seen as the marginal of the joint backward filtering
density p(xn:N | yn:N). The latter can be factorized such that
a recursive formulation similar to the forward filter is obtained:

p(xn:N | yn:N) ∝ p(yn | xn)p(xn | xn+1)

× p(xn+1:N | yn+1:N).
(18)

For arbitrary nonlinear, non-Gaussian systems, the densities
p(xn) and p(xn | xn+1) can not be calculated in closed form,
which makes this type of smoother difficult to implement.
One approach is to introduce artificial densities for p(xn)
and p(xn | xn+1) in order to obtain the formulation (17)–
(18) [19], [20]. However, for the Wiener state-space model (1),
the linearity in the state dynamics allows us to find closed-form
solutions for p(xn) and p(xn | xn+1), which is the property
exploited in this work.

B. Backward Filter

Based on the joint backward filtering density (18), a
backward particle filter can now be developed with (18) as the
target density. Similar to the forward filter, we will make use
of an importance distribution that factorizes according to

q(xn:N , βn:N | yn:N)

= q(xn | βn, xn+1:N , yn:N)q(βn | xn+1:N , yn:N)

× q(xn+1:N , βn+1:N | yn+1:N),

where βn are the auxiliary variables. Then, the weights are

wn|n:N = wn+1|n+1:N
p(yn | xn)p(xn | xn+1)

q(βn | xn+1:N , yn:N)

× 1

q(xn | βn, xn+1:N , yn:N)
.

(19)

It can be shown that the proposal for xn minimizing the
variance of (19) is, analogously to the forward filter, given by

q(xn | xn+1:N , yn:N) = p(xn | xn+1, yn) (20)

and then, the optimal adjustment multipliers are given by
p(yn | xn+1) (the proof follows the same lines as the proof
for the forward filter, see [2], [45] for details). Unfortunately,
this proposal is again unavailable in general but a Gaussian
approximation as in Section IV can be used instead (among
other choices). First, note that p(xn | xn+1) can be calculated
exactly as follows. Consider the joint density of xn and xn+1

p(xn, xn+1)

= N
([

xn
xn+1

]
;

[
µxn
µxn+1

]
,

[
Σxn ΣxnA

T
n+1

An+1Σxn Σxn+1

])
,

where µxn and Σxn are computed recursively according to

µxn = Anµ
x
n−1, (21a)

Σxn = AnΣxn−1A
T
n +Qn. (21b)

Conditioning on xn+1 yields

p(xn | xn+1) = N (xn;µxn|n+1,Σ
x
n|n+1), (22)

with

µxn|n+1 = µxn + ΣxnA
T
n+1(Σxn+1)−1(xn+1 − µxn+1), (23a)

Σxn|n+1 = Σxn − ΣxnA
T
n+1(Σxn+1)−1An+1Σxn. (23b)

Next, the joint Gaussian approximation of xn and yn given
by

p(xn, yn | xn+1)

≈ N
([

xn
yn

]
;

[
µxn|n+1

µyn|n+1

]
,

[
Σxn|n+1 Bn|n+1

BT
n|n+1 Sn|n+1

])

, p̃(xn, yn | xn+1),

(24)

is introduced, where µyn|n+1, Bn|n+1, and Sn|n+1 can be found
through moment matching with respect to p(xn, rn | xn+1) =
p(xn | xn+1)p(rn). The corresponding expectations are

µyn|n+1 = E{yn}, (25a)

Bn|n+1 = E{(xn − µxn|n+1)(yn − µyn|n+1)T}, (25b)

Sn|n+1 = E{(yn − µyn|n+1)(yn − µyn|n+1)T}. (25c)

Conditioning (24) on yn then yields

p̃(xn | xn+1, yn) = N (xn;µxn|N , Cn|N)

, q(xn | xn+1, yn), (26)

with

µxn|n:n+1 = µxn|n+1 +Bn|n+1S
−1
n|n+1(yn − µyn|n+1), (27a)

Cxn|n:n+1 = Σxn|n+1 −Bn|n+1S
−1
n|n+1B

T
n|n+1. (27b)

The approximate adjustment multipliers are readily obtained
from (24) by marginalizing with respect to xn and they are

p̃(yn | xn+1) = N (yn;µyn|n+1, Sn|n+1). (28)

The unnormalized backward filter weights thus become

wn|n:N ∝
p(yn | xn)

p̃(yn | xn, xn+1)
, (29)

with

p̃(yn | xn, xn+1) = N (yn;µyn|n:n+1, C
y
n|n:n+1), (30)

and

µyn|n:n+1 = µyn|n+1 (31a)

+BT
n|n+1(Σxn|n+1)−1(xn − µxn|n+1),

Cyn|n:n+1 = Sn|n+1 −BT
n|n+1(Σxn|n+1)−1Bn|n+1. (31b)

Algorithm 3 Backward Filter Iteration
1: Calculate µx,mn|n+1 and Σx,mn|n+1 according to (23) using
xmn+1|n+1:N

2: Calculate the moments µy,mn|n+1, Bmn|n+1, and Smn|n+1

according to (25) using xmn+1|n+1:N

3: Calculate and normalize the auxiliary variable probabilities

v̄m = wmn+1|n+1:NN (yn;µy,mn|n+1, S
m
n|n+1)

vmn|n:N =
v̄m

∑M
k=1 v̄

k

4: Sample βmn ∼ C({vkn|n:N}Mk=1)

5: Calculate µx,β
m
n

n|n:n+1 and Cx,β
m
n

n|n:n+1 according to (27) using

x
βm
n

n+1|n+1:N

6: Sample xmn|n:N ∼ N (µ
x,βm

n

n|n:n+1, C
x,βm

n

n|n:n+1)

7: Calculate µy,mn|n:n+1 and Cy,mn|n:n+1 according to (31) using

µy,β
m

n|n+1, Bβ
m

n|n+1, xmn|n:N , and µx,β
m

n|n+1
8: Calculate and normalize particle weights

w̄m =
p(yn | xmn)

N (yn;µy,mn|n:n+1, C
y,m
n|n:n+1)

wmn|n:N =
w̄m

∑M
k=1 w̄

k

One iteration of the backward filter can now be summarized
and is given in Algorithm 3, where xmn|n:N denotes the mth
particle in the backward direction.

It remains to find an initialization for the backward filter at
n = N . First note that at that time, the target density is

p(xN | yN) ∝ p(yN | xN)p(xN). (32)

A straightforward approach is then to reuse the particles from
the forward filter and sample from

p̂(xN | y1:N) ≈
M∑

m=1

wmN |Nδ(xN − xmN |N), (33)

where the filtered weights at time N are given by

wN |N ∝
p(yN | xN)

p̃(yN | xN , xN−1)
.

Thus, choosing

vN |N ∝ p(xN)p̃(yN | xN , xN−1) (34)

and sampling according to

q(βN | yN) = C({vmN |N}Mm=1), (35a)

q(xN | βN , yN) = p̂(xN | y1:N), (35b)

yields that the smoothed weights become

wN |N ∝
p(yN | xN)p(xN)

q(βN | yN)q(xN | βN , yN)
= 1. (36)

Algorithm 4 Smoother
1: Sample xm0|0 ∼ N (µx0 ,Σ

x
0) and set wm0|0 = 1/M .

2: for n = 1, . . . , N do
3: Run the forward filter iteration in Algorithm 2.
4: Calculate µxn and Σxn according to (21).
5: end for
6: Initialize xmN |N and wmN |N according to (35) and (36).
7: for n = N − 1, . . . , 1 do
8: Run the backward filter iteration in Algorithm 3.
9: Calculate and normalize the smoothed particle

weights according to (39).
10: end for

C. Resulting Smoother

Having developed both the forward and backward filters, the
resulting smoother can now be assembled. First, note that

p̂(yn:N | xn) ∝
M∑

m=1

wmn|n:N
p(xmn|n:N)

δ(xn − xmn|n:N), (37)

which is obtained by replacing the backward filtering density
by its particle approximation in (17). Next, using (37) together
with the particle approximation of the predictive density

p̂(xn | y1:n−1) =
M∑

k=1

wkn−1|1:n−1p(xn | xkn−1|1:n−1)

in (16) gives

p(xn | y1:N) ∝
M∑

k=1

wkn−1|1:n−1p(xn | xkn−1|1:n−1)

×
M∑

m=1

wmn|n:N
p(xmn|n:N)

δ(xn − xmn|n:N)

=
M∑

m=1

M∑

k=1

wkn−1|1:n−1p(x
m
n|n:N | xkn−1|1:n−1)

×
wmn|n:N
p(xmn|n:N)

δ(xn − xmn|n:N).

(38)

Thus, we can define the smoothed particle weights as

wmn|1:N ∝
wmn|n:N
p(xmn|n:N)

(39)

×
M∑

k=1

wkn−1|1:n−1p(x
m
n|n:N | xkn−1|1:n−1)

and obtain the particle approximation

p̂(xn | y1:N) =
M∑

m=1

wmn|1:Nδ(xn − xmn|n:N) (40)

for the marginal smoothing density. This finally yields the
complete smoothing algorithm as listed in Algorithm 4.

D. Computational Complexity

The proposed smoother (Algorithm 4) consists of three
main steps: 1) Forward filtering, 2) backward filtering, and
3) calculation of the smoothed weights.

Since both the forward filter and the backward filter are based
on the APF, it follows that their computational complexity is of
order O(M). Also, all steps except for the weight normalization
can be parallelized. Calculating the smoothed weights scales
quadratically in M due to the double sum in (38). However,
since the transition density is linear and Gaussian, this can be
computed efficiently by evaluating p(xmn|n:N | xkn−1|1:n−1) for
all k at once. Hence, the overall complexity of the smoother
is of order O(M2) with a low constant.

Note that the algorithm can be sped up by using the bootstrap
proposal in both the forward and backward directions, rather
than the approximations of the optimal proposals. In that case,
calculation of the linearized moments, which has to be done
for each particle individually, is not required and extending the
state trajectories can be done very efficiently (at the expense
of a less accurate proposal), see [23].

VI. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the performance of the proposed
method in an example, where we also compare the method
to the existing methods from the literature. In particular, it is
compared to the forward filtering backward simulation (FFBSi)
particle smoother [27], the marginal smoother from [37] (KSD),
as well as a particle Gibbs with ancestor sampling-based
MCMC smoother (CPF-AS) [41], [42].

A. Setup

The system under consideration is given by

xn =

−0.368 −0.888 −0.524 −0.555
1 0 0 0
0 1 0 0
0 0 1 0

xn−1 + εn,

zn =
[
1 0.1 −0.49 0.01

]
xn,

yn = g(zn) + rn,

with

gn(zn) =

1 + z z < −1,

− sin(πz)
π −1 ≤ z ≤ 1,

−1 + z z > 1,

which is the non-monotonic model that was also considered
in [49]. Furthermore, µx0 , Σx0 , Q, and R were chosen as

µx0 =
[
0 0 0 0

]T
, Σx0 = I4, Q = 0.252I4, R = 0.1.

We evaluate the smoothers for M = 100, 200, . . . , 1000
particles. For the proposed method, we use the same number
of particles in the forward and backward filters, while for
the FFBSi smoother, we simulate M/2 backward trajectories.
For the CPF-AS, we use the same number of particles in the
individual particle filters and show the results for K = 10
and K = 20 trajectories drawn from the posterior. The filter

200 400 600 800 1,000
0.9

1

1.1

1.2

1.3

M

e R
M

SE

Fig. 1. Comparison of the time-averaged RMSE eRMSE for the proposed
smoother (), FFBSi (), KSD (), CPF-AS with K = 10
trajectories (), and CPF-AS with K = 20 trajectories ().

introduced in Section IV is used in the forward pass of all the
smoothers. In total, L = 100 completely randomized Monte
Carlo simulations with N = 100 time samples are run.

The smoothers are compared in terms of the time-averaged
root mean squared error (RMSE) defined as

eRMSE =

√√√√ 1

LN

L∑

l=1

N∑

n=1

(x̂ln|N − xln)T(x̂ln|N − xln),

where the superscript l denotes the lth Monte Carlo simulation,
as well as the processing time tp for the complete batch of
data. The methods are implemented as m-code in MATLAB
and the simulations are run on a 3.4 GHz 3rd generation Intel
E3 processor with 16 GB RAM.

B. Results

Fig. 1 shows the time-averaged RMSE as a function of the
number of particles obtained from the Monte Carlo simulations.
The figure indicates that there is no significant performance
difference between the proposed method, the FFBSi smoother
as well as the CPF-AS (with K = 20 trajectories sampled from
the posterior) while the CPF-AS (with K = 10 trajectories)
and the KSD smoothers perform somewhat worse. The latter
is as expected since this was already pointed out in [37]. Note
that the RMSE does not decrease significantly for more than
approximately M = 500 particles. This is mainly due to the
quite smooth and weak non-linearity.

Fig. 2 shows the measured processing time for all five
smoothers with varying number of particles. Since these
numbers depend on the specific implementation as well as
the platform, their significance is mainly qualitative rather than
quantitative. Unlike for the RMSE, the differences here are
more significant. The proposed smoother is roughly four times
faster than the CPF-AS (for K = 10 trajectories) and about as
fast as the FFBSi smoother for low numbers of particles and
considerably faster for larger M . The KSD smoother is the
fastest, being roughly two to three times as fast as the proposed
method. However, thanks to the efficient implementation, the
computational complexity increases much more slowly for

200 400 600 800 1,000

50

100

150

M

t p
/
s

Fig. 2. Comparison of the processing time tp for the proposed smoother
(), FFBSi (), KSD (), CPF-AS with K = 10 trajectories
(), and CPF-AS with K = 20 trajectories ().

the proposed smoother compared to, for example, the FFBSi
smoother. The CPF-AS and KSD smoothers scale linearly, as
expected [37], [42].

VII. CONCLUSIONS

In this paper, we proposed a particle smoother for Wiener
state-space models based on the two-filter formulation. In
contrast to existing two-filter smoothers, the proposed method
exploits the model structure to obtain a closed-form expression
for the backward dynamics. Furthermore, auxiliary particle
filters where the optimal proposal densities are approximated
using Gaussian densities are used in both filters.

The numerical results indicate that the proposed method
performs as well as the compared state of the art smoothers in
terms of RMSE. This is to be expected since all methods target
the same smoothing density which is indeed approximated
similarly by all the compared algorithms. The advantage of the
proposed smoother over the compared ones is highlighted in
the comparison of the computational complexity. The two-filter
structure of the proposed smoother only requires two filters to
be run (plus a few light-weight computations in propagating the
prior mean and covariance as well as calculating the smoothed
weights) and thus, the smoother scales well in terms of the
number of particles and time samples, making it suitable
in applications that are computationally prohibitive for other
smoothers.

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
February 2002.

[2] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in Handbook of Nonlinear Filtering, ser.
Oxford Handbooks, D. Crisan and B. Rozovskii, Eds. Oxford, UK:
Oxford University Press, 2011, vol. 12, pp. 656–704.

[3] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[4] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, navi-
gation, and tracking,” IEEE Transactions on Signal Processing, vol. 50,
no. 2, pp. 425–437, February 2002.

[5] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Miguez, “Particle filtering,” IEEE Signal Processing
Magazine, vol. 20, no. 5, pp. 19–38, September 2003.

[6] T. B. Schön, F. Gustafsson, and R. Karlsson, “The particle filter in
practice,” in Handbook of Nonlinear Filtering, ser. Oxford Handbooks,
D. Crisan and B. Rozovskii, Eds. Oxford, UK: Oxford University Press,
2011, vol. 12.

[7] R. Hostettler and P. M. Djurić, “Vehicle tracking based on fusion of
magnetometer and accelerometer sensor measurements with particle
filtering,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11,
pp. 4917–4928, November 2015.

[8] S. Särkkä, A. Vehtari, and J. Lampinen, “Rao–Blackwellized particle
filter for multiple target tracking,” Information Fusion, vol. 8, no. 1, pp.
2–15, 2007.

[9] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems,” in Probability
and Statistics: Essays in Honor of David A. Freedman, ser. Collections,
D. Nolan and T. Speed, Eds. Institute of Mathematical Statistics, 2008,
vol. 2, pp. 316–334.

[10] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” Journal of the American Statistical Association, vol. 94, no. 446,
pp. 590–599, 1999.

[11] R. van der Merwe, A. Doucet, N. de Freitas, and E. A. Wan, “The
unscented particle filter,” in Advances in Neural Information Processing
Systems, 2001, pp. 584–590.

[12] C. Naesseth, F. Lindsten, and T. B. Schön, “Nested sequential Monte
Carlo methods,” in 32nd International Conference on Machine Learning
(ICML), Lille, France, July 2015, pp. 1292–1301.

[13] P. Bunch and S. J. Godsill, “Approximations of the optimal importance
density using Gaussian particle flow importance sampling,” Journal of
the American Statistical Association, vol. 111, no. 514, pp. 748–762,
2016.

[14] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, “Rao–Blackwellised
particle filtering for dynamic Bayesian networks,” in 16th Conference
on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, 2000,
pp. 176–183.

[15] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle filters
for mixed linear/nonlinear state-space models,” IEEE Transactions on
Signal Processing, vol. 53, no. 7, pp. 2279–2289, July 2005.

[16] F. Lindsten, P. Bunch, S. Särkkä, T. B. Schön, and S. J. Godsill,
“Rao–Blackwellized particle smoothers for conditionally linear Gaussian
models,” IEEE Journal of Selected Topics in Signal Processing, vol. 10,
no. 2, pp. 353–365, March 2016.

[17] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
Wiley, April 1980.

[18] Y. Bresler, “Two-filter formulae for discrete-time non-linear Bayesian
smoothing,” International Journal of Control, vol. 43, no. 2, pp. 629–641,
1986.

[19] M. Briers, A. Doucet, and S. Maskell, “Smoothing algorithms for
state–space models,” Annals of the Institute of Statistical Mathematics,
vol. 62, no. 1, pp. 61–89, 2010.

[20] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential smoothing
algorithm with linear computational cost,” Biometrika, vol. 97, no. 2, pp.
447–464, 2010.

[21] M. Roth, G. Hendeby, and F. Gustafsson, “Nonlinear Kalman filters
explained: A tutorial on moment computations and sigma point methods,”
Journal of Advances in Information Fusion, vol. 11, no. 1, pp. 47–70,
2016.

[22] M. Briers, “Improved Monte Carlo methods for state-space models,”
Ph.D. dissertation, University of Cambridge, 2007.

[23] R. Hostettler, “A two filter particle smoother for Wiener state-space
systems,” in IEEE Conference on Control Applications (CCA), Sydney,
Australia, September 2015.

[24] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models,” Journal of Computational and Graphical
Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[25] P. E. Jacob, L. M. Murray, and S. Rubenthaler, “Path storage in the
particle filter,” Statistics and Computing, vol. 25, no. 2, pp. 487–496,
March 2015.

[26] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum likelihood estimates
of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450,
August 1965.

[27] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for
nonlinear time series,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 156–168, 2004.

[28] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential Monte
Carlo smoothing for general state space hidden Markov models,” The
Annals of Applied Probability, vol. 21, no. 6, pp. 2109–2145, December
2011.

[29] E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön, “Adaptive
stopping for fast particle smoothing,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
May 2013, pp. 6293–6297.

[30] P. Bunch and S. J. Godsill, “Improved particle approximations to the
joint smoothing distribution using Markov Chain Monte Carlo,” IEEE
Transactions on Signal Processing, vol. 61, no. 4, pp. 956–963, February
2013.

[31] F. Lindsten and T. B. Schön, “Backward simulation methods for Monte
Carlo statistical inference,” Foundations and Trends in Machine Learning,
vol. 6, pp. 1–143, 2013.

[32] D. Fraser and J. Potter, “The optimum linear smoother as a combination
of two optimum linear filters,” IEEE Transactions on Automatic Control,
vol. 14, no. 4, pp. 387–390, August 1969.

[33] G. Kitagawa, “The two-filter formula for smoothing and an implementa-
tion of the Gaussian-sum smoother,” Annals of the Institute of Statistical
Mathematics, vol. 46, no. 4, pp. 605–623, 1994.

[34] M. Hürzeler and H. R. Künsch, “Monte Carlo approximations for general
state-space models,” Journal of Computational and Graphical Statistics,
vol. 7, no. 2, pp. 175–193, 1998.

[35] M. Briers, A. Doucet, and S. S. Singh, “Sequential auxiliary particle
belief propagation,” in 7th International Conference on Information
Fusion (FUSION), vol. 1, July 2005.

[36] T. N. M. Nguyen, S. Le Corff, and E. Moulines, “On the two-filter
approximations of marginal smoothing distributions in general state
space,” Advances in Applied Probability, March 2018.

[37] J. Kronander, T. B. Schön, and J. Dahlin, “Backward sequential Monte
Carlo for marginal smoothing,” in IEEE Workshop on Statistical Signal
Processing (SSP), June 2014, pp. 368–371.

[38] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain
Monte Carlo methods,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 72, no. 3, pp. 269–342, 2010.

[39] N. Whiteley, “Discussion on particle Markov chain Monte Carlo methods,”
Journal of the Royal Statistical Society: Series B, vol. 72, pp. 306–307,
2010.

[40] N. Whiteley, C. Andrieu, and A. Doucet, “Efficient bayesian inference
for switching state-space models using discrete particle Markov chain
Monte Carlo methods,” Bristol Statistics Research, Tech. Rep., 2010.

[41] F. Lindsten, M. I. Jordan, and T. B. Schön, “Particle Gibbs with ancestor
sampling,” Journal of Machine Learning Research, vol. 15, pp. 2145–
2184, 2014.

[42] A. Svensson, T. B. Schön, and M. Kok, “Nonlinear state space smoothing
using the conditional particle filter,” in 17th IFAC Symposium on System
Identification (SYSID), vol. 48, no. 28, Beijing, China, 2015, pp. 975–980.

[43] J. Westerborn and J. Olsson, “Efficient particle-based online smoothing
in general hidden Markov models,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
8003–8007.

[44] J. Olsson and J. Westerborn, “Efficient particle-based online smoothing
in general hidden Markov models: The PaRIS algorithm,” Bernoulli,
vol. 23, pp. 1951–1996, August 2017.

[45] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, 2000.

[46] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422,
March 2004.

[47] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transac-
tions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.

[48] J. H. Kotecha and P. M. Djurić, “Gaussian particle filtering,” IEEE
Transactions on Signal Processing, vol. 51, no. 10, pp. 2592–2601,
October 2003.

[49] F. Lindsten, T. B. Schön, and M. I. Jordan, “Bayesian semiparametric
Wiener system identification,” Automatica, vol. 49, no. 7, pp. 2053–2063,
2013.

