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Modeling the Drift Function in Stochastic
Differential Equations using Reduced Rank

Gaussian Processes ?

Roland Hostettler ∗ Filip Tronarp ∗ Simo Särkkä ∗

∗Department of Electrical Engineering and Automation
Aalto University, Finland

(e-mail: firstname.lastname@aalto.fi)

Abstract: In this paper, we propose a Gaussian process-based nonlinear, time-varying drift
model for stochastic differential equations. In particular, we combine eigenfunction expansion of
the Gaussian process’ covariance kernel in the spatial input variables with spectral decomposition
in the time domain to obtain a reduced rank state space representation of the drift model, which
avoids the growing complexity (with respect to time) of the full Gaussian process solution. The
proposed approach is evaluated on two nonlinear benchmark problems, the Bouc–Wen and the
cascaded tanks systems.

Keywords: Nonlinear system identification, nonparametric methods, Bayesian methods, filtering
and smoothing, estimation and filtering, Gaussian processes

1. INTRODUCTION

Stochastic differential equations (SDEs) are a powerful
tool for modeling time series (Øksendal, 2010). They have
been used to model different types of systems such as
heat dynamics in buildings (Madsen and Holst, 1995),
forecasting of solar irradiation (Iversen et al., 2014), or
in financial statistics (Lindström et al., 2015).

In this article, we consider nonlinear SDEs of the form
dxt = f(xt,ut, t)dt+ dβt, (1)

where xt , x(t) ∈ RNx is the state vector, ut ,
u(t) ∈ RNu is a deterministic input, f(xt,ut, t) =

[f1(xt,ut, t) f2(xt,ut, t) . . . fNx(xt,ut, t)]
T is the nonlin-

ear, time-varying drift function, and βt , β(t) is Brownian
motion with diffusion matrix Q. Given the SDE model (1),
our aim is then to infer the drift function f(xt,ut, t) and
the diffusion matrix Q from system identification data
obtained as

yn = Hxtn + vn, (2)
where yn ∈ RNy is the measurement, H ∈ RNy×Nx , and
vn is a white noise sequence with covariance R.

If the system under consideration is well known, for example
from physical relationships, then a first principles-based
model or parametric grey-box model may be most suitable
and the system identification problem reduces to estimating
the model parameters (Ljung, 1997; Kristensen et al., 2004).
However, when the knowledge of the system is not sufficient
to infer a suitable model structure, a non-parametric black-
box approach may be required. This paper discusses the
latter, where the drift function is assumed to be an outcome
of a Gaussian process (GP) (Rasmussen and Williams,
2006). A similar approach has been considered in Ruttor
? Financial support of the Academy of Finland under grants no.
#266940 and #295080 is hereby gratefully acknowledged.

et al. (2013) and Batz et al. (2017), where the time-invariant
drift was modeled as a GP and measurements of the full
state vector were assumed. Furthermore, the problem was
solved using the full batch formulation for small datasets
and sparse approximations for large datasets (Ruttor et al.,
2013; Batz et al., 2017). Modeling the state transition
function as GPs has also been considered in the context
of discrete time state space models, where basis function
expansions were used to mitigate the problem of increasing
computational complexity with time (Svensson et al., 2016;
Svensson and Schön, 2017). However, modeling the state
transition function of discrete time state space models is
not equivalent to modeling the drift. In fact, if the discrete
time model originates from a discretized continuous time
model, the resulting discrete time GP state space model
may actually be more complex than the corresponding drift
GP model.

In contrast to these approaches, in this paper, we use
eigenfunction expansion of the covariance kernel in its
spatial arguments xt and ut, similar to Svensson et al.
(2016), together with spectral decomposition in t to
obtain a reduced rank GP model for the time-varying
drift function (Hartikainen and Särkkä, 2010; Hostettler
et al., 2017). The resulting model is suitable for recursive
Bayesian estimation using, for example, Kalman or particle
filtering and scales well with respect to the temporal
domain. Furthermore, estimating the hyperparameters can
readily be achieved by using standard approaches such as
maximizing the marginal likelihood, which is used in this
paper, or particle Markov chain Monte Carlo (Svensson
et al., 2016; Hostettler et al., 2017). The proposed model is
evaluated on two nonlinear benchmark problems, the Bouc–
Wen oscillator and the cascaded tanks systems (Schoukens
and Noël, 2017).



2. GAUSSIAN PROCESSES

In this section we briefly review GP regression, eigenfunc-
tion expansion of the covariance function, as well as spectral
decomposition to obtain a GP formulation suitable for
sequential inference.

2.1 Gaussian Process Regression

A GP is a random function defined as (Rasmussen and
Williams, 2006)

f(x, t) ∼ GP(m(x, t), k(x, t,x′, t′)) (3)
where x and t are the function’s inputs (t is considered to
be the time here), m(x, t) is the process’ mean function
(without loss of generality assumed to be zero for the
remainder of this paper), and k(x, t,x′, t′) is the covariance
function. Both m(x, t) and k(x, t,x′, t′) are parametrized
by a set of hyperparameters θ. This parametrization is
implicit and we will return to it in Section 4.

Assume now that we are given the observations of the
function f1:N = [f1 f2 . . . fN ]

T (where fn , f(xn, tn)
and the observations are assumed to be noise free for
simplicity of presentation) as well as the corresponding
inputs x1:N = {x1,x2, . . . ,xN} and t1:N = {t1, t2, . . . , tN}.
Then, the predictive distribution of fk (k /∈ {1, . . . , N})
given the test inputs {xk, tk} is

p(fk | f1:N ) = N (fk;µk|1:N , σ
2
k|1:N ) (4)

where N (x;µ,Σ) denotes the Gaussian probability density
function with mean vector µ and covariance matrix Σ.
Furthermore, the predictive moments are

µk|1:N = Kk,1:NK
−1
1:N,1:Nf1:N (5a)

σ2
k|1:N = Kk,k −Kk,1:NK

−1
1:N,1:NK1:N,k (5b)

with Kk,1:N , k(xk, tk, x1:N , t1:N ) and K1:N,1:N =
k(x1:N , t1:N , x1:N , t1:N ). Hence, the GP allows us to make
principled statistical predictions of the function value fk for
the test inputs {xk, tk}, based on a set of training inputs
{x1:N , t1:N} and outputs f1:N . Please see Rasmussen and
Williams (2006) for a more thorough introduction to GPs.

For the remainder of this paper, we will make use of a
particular class of covariance functions, namely covariance
functions that are separable in x and t as well as stationary
in t, that is, covariance functions of the form

k(x, t,x′, t′) = kS(x,x′)kT (τ), (6)
where τ = t− t′. This assumption is not strictly necessary
and does not impose significant restrictions, but it simplifies
the further derivations. The choice of covariance function is
generally up to the user, and thus, any such choice is valid
and has also been made before (Hartikainen and Särkkä,
2010; Carron et al., 2016).

2.2 Basis Function Expansion

Unfortunately, the prediction in (5) scales according to
O(N3) due to the inversion of the N×N covariance matrix
K1:N,1:N , which is prohibitive for large N . This will be
particularly challenging when we use GPs to model the drift
function in Section 3, since in this case, the computational
complexity will grow with time (Ruttor et al., 2013).
Approaches to mitigate this problem include, among others,

kernel approximations using the generalized power spectral
density and random feature approximation (Zorzi and
Chiuso, 2017) or basis function expansions (Rasmussen
and Williams, 2006; Solin and Särkkä, 2014). In this work,
we consider a time-varying Karhunen–Loève expansion for
f(x, t) of the form

f(x, t) =
∞∑

j=0

αj,tψj(x) (7)

where ψj(x) is the jth orthonormal eigenfunction for the
integral operator defined by the kernel kS(x,x′). That
is (Mercer, 1909),

〈ψi(x), ψj(x)〉 =

{
1 i = j,

0 i 6= j,
(8a)

〈kS(x,x′), ψj(x
′)〉 = λjψj(x), (8b)

where 〈·, ·〉 denotes the inner product and λj is the eigen-
value associated with the eigenfunction ψj(x). Furthermore,
the time-varying coefficients αj,t in (7) are given by

αj,t = 〈f(x, t), ψj(x)〉. (9)

Note that
Cov{αi,t, αj,t′} = Cov{〈f(x, t), ψi(x)〉, 〈f(x, t′), ψj(x)〉}

= kT (t, t′)〈ψi(x), 〈k(x,x′), ψj(x
′)〉〉

= kT (t, t′)〈ψi(x), λjψj(x)〉
= kT (t, t′)λjδij ,

where δij is the Kronecker delta function. Thus, the
coefficients αj,t are iid Gaussian processes of the form

αj,t ∼ GP(0, kα,j(t, t
′)) (10)

with
kα,j(t, t

′) = λjkT (t, t′), (11)
which follows from the fact that ψj(x) are eigenfunctions
associated to the space kernel kS(x,x′). Note that for gen-
eral basis expansions the coefficients are indeed correlated.

Finally, it follows that
k(x, t,x′, t′) = Cov{f(x, t), f(x′, t′)}

= Cov




∞∑

i=0

αi,tψi(x),
∞∑

j=0

αj,tψ
∗
j (x′)





=
∞∑

j=0

λjkT (t, t′)ψj(x)ψ∗j (x′)

= kT (t, t′)
∞∑

j=0

λjψj(x)ψ∗j (x′) (12)

where the superscript ∗ denotes the complex conjugate.
Note that in practice, the infinite sum over j can not be
realized and thus, it has to be truncated at some upper
limit J �∞, which introduces an approximation error.

Example 1 below demonstrates one possible eigenfunction
decomposition for stationary covariance functions.
Example 1. Consider a GP

f(x, t) ∼ GP(0, kS(x, x′)kT (t, t′))

with the scalar inputs x and t and stationary covariance
function in x, that is, kS(x, x′) = k(x − x′). In this case,
the eigenfunctions on the domain x ∈ [−γ, γ] with respect
to the Lebesque measure are given by the unitary Fourier
basis functions (Rasmussen and Williams, 2006)



ψj(x) =
1√
γ

exp

(
i j2πx

γ

)
. (13)

Furthermore, the eigenvalues are found from (8) as follows:
λjψj(x) = 〈kS(x− x′), ψj(x′)〉

=

∫ γ

−γ
kS(x− x′), ψj(x′)dx′

=

∫ γ

−γ
kS(x− x′) 1√

γ
exp

(
i j2πx′

γ

)
dx′

=
1√
γ

exp

(
i j2πx

γ

)∫ γ

−γ
kS(x) exp

(
− i j2πx

γ

)
dx.

Thus, the eigenvalues are given by

λj =

∫ γ

−γ
kS(x) exp

(
− i j2πx

γ

)
dx,

that is, the jth Fourier series coefficient.

2.3 Spectral Decomposition

In addition to the rank reduction in the input x using
basis function expansion, we also propose to use spectral
decomposition of the resulting GPs αj,t in (10) (Hartikainen
and Särkkä, 2010). This requires that the resulting co-
variance function kα,j(t, t

′) is in fact stationary, that is,
kα,j(t, t

′) = kα,j(τ) with τ = t− t′.
In this case, the spectral density Sα,j(ω) of kα,j(τ) can be
decomposed (either exactly or approximately) into a white
process with spectral density qα,j and a linear system with
frequency response function H(iωt) such that (Papoulis,
1984; Hartikainen and Särkkä, 2010)

Sα,j(ω) = qα,jH(iω)H(iω)∗. (14)
Thus, αj,t can equivalently be written as the output of a
linear system that is driven by a white process. This can
be written as the stochastic differential equation (Papoulis,
1984; Hartikainen and Särkkä, 2010)

dzj,t = Ajzj,tdt+Bjdεj,t,

αj,t = Cjzj,t,
(15)

where the matrix Aj , vectors Bj and Cj , as well as the
representation in the vector zj,t are completely defined by
the linear system H(iωt) and the particular state space
representation (e.g., control canonical form or companion
form), and εj,t denotes Brownian motion with diffusion
coefficient qα,j . A simple example for how this is achieved
in practice is shown in Example 2 below, please refer
to Hartikainen and Särkkä (2010) for more details.
Example 2. Consider a Gaussian process (10)

αj,t ∼ GP(0, kα,j(t, t
′))

with
kα,j(t, t

′) = λjkOU(τ),

where kOU(τ) = σ2 exp (−|τ |/`) is the Ornstein–Uhlenbeck
covariance function. The spectral density of this covariance
function can be decomposed as (with κ = 1/`)

Sα,j(ω) = λjσ
2 2κ

κ2 + ω2

= 2λjκσ
2 1

(κ+ iω)(κ− iω)
,

and thus, H(iω) = 1/(κ + iω). Converting H(iω) to
companion form yields A = κ, B = 1, and C = 1, and the
diffusion coefficient of the Brownian motion is 2λjκσ

2.

3. REDUCED RANK GAUSSIAN PROCESS DRIFT
MODEL

Having developed the general reduced rank Gaussian
process model in the previous section, we now turn our
attention to modeling the drift function in (1) in this
section. The basic idea is to model the individual drift
functions fl(xt,ut, t) in (1) as reduced rank separable GPs
as introduced in Section 2, that is, such that

fl(xt,ut, t) ∼ GP(0, kS(xt,ut,x
′
t,u
′
t)kT (τ)), (16)

where the inputs are the time-varying state xt, the
deterministic control input ut, and time t.

Using the results from Section 2.2 and (16), the lth
component of (1) can be written as

dxl = Ψ(xt,ut)αl,tdt+ dβl,t. (17)
Here,

Ψ(xt,ut) = [ψ1(xt,ut) ψ2(xt,ut) . . . ψJ(xt,ut)] ,

αl,t = [α1,t α2,t . . . αJ,t]
T
,

and αj,t is as in (10).

Furthermore, using the spectral decomposition in Sec-
tion 2.3 for each αj,t we obtain

dz̃l,t = Az̃l,tdt+Bdεl,t, (18a)
αl,t = Cz̃l,t, (18b)

where
z̃l,t =

[
zT1,t z

T
2,t . . . z

T
J,t

]T
,

εl,t = [ε1,t ε2,t . . . εJ,t]
T
,

A = blkdiag(A1,A2, . . . ,AJ),

B = blkdiag(B1,B2, . . . ,BJ),

C = blkdiag(C1,C2, . . . ,CJ),

and Qε,l = diag(qα,1, qα,2, . . . , qα,J) is the diffusion matrix
for εl,t.

Then, combining (17) and (18) yields the complete reduced
rank GP drift model

dxl,t = Ψ(xt,ut)Cz̃l,tdt+ dβl,t, (19a)
dz̃l,t = Az̃l,tdt+Bdεl,t. (19b)

Finally, let ξt =
[
xT
t z

T
t

]T denote the augmented system
where zt is a vector of all z̃l,t (for l = 1, . . . , Nx), then ξt
is governed by the following SDE

dξt = g(ξt,ut, t)dt+ dwt, (20)
where the combined drift g(ξt,ut, t) is given by

g(ξt,ut, t) =

[
(INx ⊗Ψ(xt,ut)C)zt

INx ⊗Azt

]
,

and wt is a Wiener process with instantaneous covariance,
Qw, given by

Qw = blkdiag(Q,Qε,1, . . . ,Qε,Nx
).

4. ESTIMATION

In order to fit the model to a given data set y1:N =
{y1,y2, . . . ,yN}, the Gaussian process hyperparameters,
θ, need to be estimated. Here, a maximum a posteriori
approach is taken along with the prediction error decom-
position (Ljung, 1997; Särkkä, 2013),

p(y1:N | θ) =
N∏

n=1

p(yn | y1:n−1,θ), (21)



where yk:n = ∅ for k > n by convention. The posterior
distribution for θ is then

p(θ | y1:N ) ∝ p(θ)
N∏

n=1

p(yn | y1:n−1,θ). (22)

The prediction densities in (21) can be approximated with
an extended Kalman filter, similar to the approach in
Kristensen et al. (2004). That is, let ξ̂t|s(θ) and P t|s(θ) be
the mean and covariance matrix of the state ξt conditioned
on θ (in the sequel the dependency on θ is omitted for
notational convenience). The mean and covariance of ξt
then satisfy the following differential equation on the
interval [tn, tn−1[

dξ̂t|tn−1

dt
≈ g(ξ̂t|tn−1

) (23a)

dP t|tn−1

dt
≈ Gξ,tP t|tn−1

+ P t|tn−1
GT
ξ,t +Qw (23b)

where Gξ,t is the Jacobian of g(ξt,ut, t) evaluated at
ξ̂t|tn−1

. For high frequency data, an Euler discretization is
sufficient to solve (23). Furthermore, note that (23) is also
the method for predicting future data for a given θ.

The measurement yn then follows a Gaussian distribution,
yn | y1:n−1 ∼ N (ŷn|1:n−1,Sn|1:n−1), (24)

where
Hξ = [H 0Nz ] , (25a)

ŷn|1:n−1 = Hξξ, (25b)

Sn|1:n−1 = HξP tn|tn−1
HT
ξ +R. (25c)

The state estimate at tn given measurements up to tn is
given by

Kn = P tn|tn−1
HT
ξS
−1
n|1:n−1, (26a)

ξ̂tn|tn = ξ̂tn|tn−1
+Kn(yn − ŷn|1:n−1), (26b)

P tn|tN = P tn|tn−1
−KnSn|1:n−1K

T
n. (26c)

The posterior for θ can then be evaluated (up to a nor-
malization constant) in a recursive manner and parameter
estimation can be done by standard optimization methods.

5. RESULTS

We evaluate the proposed approach on two nonlinear system
identification benchmark datasets, namely the Bouc–Wen
and the cascaded tanks benchmarks (Noël and Schoukens,
2016; Schoukens et al., 2016; Schoukens and Noël, 2017). In
both examples, the hyperparameters of the GP priors are
estimated by maximizing the marginal log-posterior of the
training data as discussed in Section 4 and the predictive
performance of the model is evaluated on the validation
datasets. The performance is measured using the root mean
squared error (RMSE) of the one-step ahead prediction

eRMS =

√√√√ 1

N

N∑

n=1

(yn − ŷn|n−1)2 (27)

where ŷn|n−1 is the mean of the predictive distribution.
Since the RMSE (27) is scale-dependent, we also evaluate
and compare the proposed approach in terms of the
coefficient of determination defined as

R2 = 1− eRMS√
1
N

∑N
n=1(yn − ȳ)2

, (28)

Table 1. Comparison of the RMSE and R2

values for the Bouc–Wen benchmark.

Model Multisine Swept sine
RMSE R2 RMSE R2

AR(1) 21.6× 10−5 0.676 20.9× 10−5 0.685
BLA1 1.13× 10−5 0.983 0.698× 10−5 0.989
Volterra1 0.895× 10−5 0.986 0.347× 10−5 0.994
GP drift 0.580× 10−5 0.991 0.096× 10−5 0.998
1Schoukens and Griesing-Scheiwe (2016)

where ȳ = 1
N

∑N
n=1 yn is the sample mean.

The method is implemented as m-code in Matlab and run
on Linux desktop machine with a 3.4GHz Intel Xeon E3
central processing unit and 16GB random access memory.

5.1 Bouc–Wen System

The Bouc–Wen system is a nonlinear oscillator with hys-
teretic behavior and thus, a system with time-varying
nonlinearity. The model, together with the governing dif-
ferential equation and further details about the benchmark
problem can be found in Noël and Schoukens (2016)
and Schoukens and Noël (2017).

In this case, we incorporate domain knowledge (i.e. the
system being a second order mechanical system) and only
model the drift of the second state as a GP such that

d

[
x1,t
x2,t

]
=

[
x2,t

f(xt, ut, t)

]
dt+

[
0
1

]
dβt.

We choose the covariance kernel of f(xt, ut, t) as a sum
of squared exponential kernels in the variables xt and ut
times an Ornstein–Uhlenbeck kernel in t, such that
k(xt, t,x

′
t, t
′) = (kSE(xt,x

′
t) + kSE(ut, u

′
t))kOU(t, t′),

where the squared exponential kernel is given by

kSE(x,x′) = exp

(
−1

2
(x− x′)TΛ−1(x− x′)

)

with Λ = diag(`21, `
2
2, . . . , `

2
Nx

). (Note that this yields a
model similar to the one used in Nielsen et al. (2000).)
In this case, the hyperparameters are the length scales in
xt (two), the length scale in ut, as well as the temporal
variance and length scale, and the diffusion coefficient of
βt, which yields a total of six parameters to optimize. The
number of eigenfunctions was chosen based on a pre-study
such that the covariance function approximation is well-
supported with few negligible eigenvalues. This led to 25
eigenfunctions of the form (13) for expanding kSE(xt,x

′
t)

and 5 for kSE(ut, u
′
t), and γ = 5 in both cases.

The training data is generated using the simulator provided
by the nonlinear benchmark data set (Noël and Schoukens,
2016). We use a random phase multisine excitation with
amplitude A = 50, N = 4096 samples per period, and
P = 1 periods (Pintelon and Schoukens, 2001). The
predictive performance of the model is evaluated on the
two test datasets, one with a multisine excitation and one
with a swept sine excitation, as provided by the benchmark
dataset, see Noël and Schoukens (2016) for details.

The resulting validation RMSEs are 0.580× 10−5 and
0.096× 10−5 for the multisine and swept sine excitation
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Fig. 1. Prediction error for the multisine (top) and swept
sine (bottom) excitations for the Bouc–Wen validation
datasets.

test datasets, respectively. Table 1 shows a compari-
son of the proposed model (GP drift, last row) to the
naïve first order autoregressive predictor ŷn|n−1 = yn−1
(AR(1)), the best linear approximation (BLA; Schoukens
and Griesing-Scheiwe (2016)), and the Volterra feedback
model (Schoukens and Griesing-Scheiwe, 2016). As it can
be seen, the proposed method outperforms the approaches
from the literature in this example. Furthermore, Figure 1
shows the prediction error for the two validation datasets.
In this example, estimation of the hyperparameters by
maximizing the marginal log-posterior takes about 310 s.

The Gaussian process prior for the nonlinear drift function
imposes a smoothness assumption on the model. In this
example, this smoothness captures the nonlinearity well
and thus, good performance is achieved. Furthermore,
allowing for time-varying drift, the hysteretic behavior
of the benchmark system is captured by the model, too.

5.2 Cascaded Tanks

The second example is the cascaded tanks system which
is a very common instructional example, in, for example,
control engineering. The system consists of two tanks where
the first (upper) tank is fed water from a basin through a
pump (control input). The upper tank has an outlet at the
bottom, which feeds water into the second (lower) tank.
The lower tank again has an outlet at the bottom leading to
the reservoir from where the pump is fed. In this benchmark
problem, both training and validation datasets are provided.
For a more detailed description of the benchmark problem
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Fig. 2. Cascaded tanks benchmark one step ahead predic-
tions ( ) together with the measured level ( )
for the training set (top) and validation set (bottom).

and the associated identification challenges see Schoukens
et al. (2016) or Schoukens and Noël (2017).

In this case, we model the system as a coupled system as
dx1,t = f1(x1,t, ut, t)dt+ dβ1,t (29a)
dx2,t = f2(x1,t, x2,t, t)dt+ dβ2,t (29b)

where f1(x1,t, ut, t) and f2(x1,t, x2,t, t) are Gaussian pro-
cesses as discussed in Sections 2–3, and β1,t and β2,t are
Brownian motions with diffusion coefficients q1 and q2,
respectively. We use the product of a squared exponential
and Ornstein–Uhlenbeck kernels as the covariance function,
that is,

k(x,x′, t, t′) = kSE(x,x′)kOU(t, t′). (30)
Furthermore, a two-dimensional Fourier basis with 25 basis
functions is used, and λ = 5.

In this example, the validation RMSE is 57.6× 10−3 and
a comparison of the RMSE and R2 values of the proposed
method to the performance of methods from the literature
is given in Table 2. In this case, the proposed approach (last
row) performs worse than the compared models except for
the naïve AR(1) model. Figure 2 shows the measured tank
level for the lower tank together with the predicted level for
both the training data (top) as well as the validation data
(bottom). From this, it appears that the fitted model is
capable of accurately predict the tank level in most regimes.
However, as discussed before, an important property of the
proposed model is the smoothness assumption of the drift
function by the GP prior. This assumption is, however,
violated in this example as the tanks benchmark does not
only include smooth nonlinearities (the outflow of the tanks)
but also includes hard nonlinearities (tank overflows). This
can be seen by the overshooting predictions in both the
training data (around t ≈ 750 s and t ≈ 3500 s) as well



Table 2. Comparison of the RMSE and R2

values for the cascaded tanks benchmark.

Model RMSE R2

AR(1) 185.9× 10−3 0.911
BLA1 55.6× 10−3 0.974
Volterra1 49.4× 10−3 0.991
GP drift 57.6× 10−3 0.972
1Schoukens and Griesing-Scheiwe (2016)
2Svensson and Schön (2017)

as the validation data (around t ≈ 750 s and t ≈ 2900 s).
These errors contribute the most to the prediction RMSE.
Finally, it should also be noted that linear models tend to
perform quite well in this benchmark in most regimes, see,
for example, Svensson and Schön (2017).

6. CONCLUSIONS

In this paper, we proposed modeling the nonlinear time-
varying drift function in SDE models using reduced rank
Gaussian processes. The approach is suitable for online
inference using Bayesian filtering methods and can readily
be extended to nonlinear observations of the state. The
numerical illustrations showed that the model performs
well when the underlying assumptions such as smoothness
of the drift hold. On the other hand, if these assumptions
are violated, for example by hard nonlinearities as in the
cascaded tanks example, the model is less appropriate.

It is important to point out that the proposed eigenfunction
expansion can be challenging itself. In particular, high-
dimensional inputs may require a large number of basis
functions if the higher order eigenfunctions are the Carte-
sian product of the lower dimensional ones. This can, in
part, be mitigated by incorporating domain knowledge
to reduce the model complexity. For example, in many
mechanical problems, the system is governed by an Nxth
order SDE, which eliminates the need of modeling the drift
for the Nx − 1 first states.

REFERENCES

Batz, P., Ruttor, A., and Opper, M. (2017). Approximate
Bayes learning of stochastic differential equations. ArXiv
e-prints. ArXiv:1702.05390v1.

Carron, A., Todescato, M., Carli, R., Schenato, L., and
Pillonetto, G. (2016). Machine learning meets Kalman
filtering. In 55th IEEE Conference on Decision and
Control (CDC), 4594–4599.

Hartikainen, J. and Särkkä, S. (2010). Kalman filtering
and smoothing solutions to temporal Gaussian process
regression models. In IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), 379–
384.

Hostettler, R., Särkkä, S., and Godsill, S.J. (2017). Rao–
Blackwellized particle MCMC for parameter estimation
in spatio-temporal Gaussian processes. In 27th IEEE
International Workshop on Machine Learning for Signal
Processing (MLSP). Tokyo, Japan.

Iversen, E.B., Morales, J.M., Møller, J.K., and Madsen, H.
(2014). Probabilistic forecasts of solar irradiance using
stochastic differential equations. Environmetrics, 25(3),
152–164.

Kristensen, N.R., Madsen, H., and Jørgensen, S.B. (2004).
Parameter estimation in stochastic grey-box models.
Automatica, 40(2), 225–237.

Lindström, E., Madsen, H., and Nielsen, J.N. (2015).
Statistics for Finance. Chapman and Hall/CRC.

Ljung, L. (1997). System Identification: Theory for the
User. Prentice Hall, Upper Saddle River, NJ, USA.

Madsen, H. and Holst, J. (1995). Estimation of continuous-
time models for the heat dynamics of a building. Energy
and Buildings, 22(1), 67–79.

Mercer, J. (1909). Functions of positive and negative type,
and their connection with the theory of integral equa-
tions. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering
Sciences, 209(441-458), 415–446.

Nielsen, H.A., Nielsen, T.S., Joensen, A.K., Madsen, H.,
and Holst, J. (2000). Tracking time-varying-coefficient
functions. International Journal of Adaptive Control and
Signal Processing, 14(8), 813–828.

Noël, J.P. and Schoukens, M. (2016). Hysteretic benchmark
with a dynamic nonlinearity. In Workshop on Nonlin-
ear System Identification Benchmarks, 7–14. Brussels,
Belgium.

Papoulis, A. (1984). Probability, Random Variables, and
Stochastic Processes. McGraw-Hill.

Pintelon, R. and Schoukens, J. (2001). System Identifica-
tion: A Frequency Domain Approach. Wiley-IEEE Press,
Piscataway, NJ, USA.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian
Processes for Machine Learning. The MIT Press.

Ruttor, A., Batz, P., and Opper, M. (2013). Approximate
Gaussian process inference for the drift function in
stochastic differential equations. In Advances in Neural
Information Processing Systems 26, 2040–2048.

Schoukens, M. and Griesing-Scheiwe, F. (2016). Modeling
nonlinear systems using a volterra feedback model. In
Workshop on Nonlinear System Identification Bench-
marks.

Schoukens, M., Mattsson, P., Wigren, T., and Noël, J.P.
(2016). Cascaded tanks benchmark combining soft and
hard nonlinearities. In Workshop on Nonlinear System
Identification Benchmarks, 20–23. Brussels, Belgium.

Schoukens, M. and Noël, J.P. (2017). Three benchmarks
addressing open challenges in nonlinear system identifi-
cation. In 20th IFAC World Congress, 446–451.

Solin, A. and Särkkä, S. (2014). Hilbert space meth-
ods for reduced-rank Gaussian process regression.
ArXiv:1401.5508.

Svensson, A. and Schön, T.B. (2017). A flexible state-
space model for learning nonlinear dynamical systems.
Automatica, 80, 189–199.

Svensson, A., Solin, A., Särkkä, S., and Schön, T. (2016).
Computationally efficient Bayesian learning of Gaussian
process state space models. In 19th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
volume 51, 213–221. Cadiz, Spain.

Särkkä, S. (2013). Bayesian Filtering and Smoothing.
Cambridge University Press.

Zorzi, M. and Chiuso, A. (2017). The harmonic analysis of
kernel functions. ArXiv e-prints. ArXiv:1703.05216.

Øksendal, B. (2010). Stochastic Differential Equaitons: An
Introduction with Applications. Springer, 6 edition.


