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Abstract—Microelectromechanical-systems-based inertial sen-
sors and magnetometers are low-cost, off-the-shelf sensors that
are widely used in both consumer and industrial applications.
However, these sensors suffer from biases and effects such as
axis misalignment or scale errors, which require careful system
design and periodic sensor calibration. In this paper, we propose
a fast calibration method for jointly calibrating inertial sensors
and magnetometers based on discrete-time von Mises–Fisher
filtering and expectation maximization. We evaluate the method
on built-in smartphone sensors and show that the proposed
method efficiently estimates the sensors’ parameters and reduces
the overall error.

Index Terms—Magnetometers, inertial sensors, expectation-
maximization, calibration, von Mises–Fisher filtering

I. INTRODUCTION

Recent advances in low-cost manufacturing methods have
enabled the use of inertial measurement units (IMUs) and
magnetometers in a wide range of novel motion sensing
applications. Examples of such applications include pedestrian
navigation [1], [2], rehabilitation [3], [4], or cardiac signal
reconstruction in electrocardiography [5], [6]. An important
challenge when using IMUs for motion sensing tasks is,
however, their proper calibration [7]–[9]. Accelerometers,
gyroscopes, and magnetometers typically suffer from sensor
biases or drifts, scale errors, or axis misalignment. If the sensors
are not calibrated properly, motion estimation may degrade
severely and the overall system performance can be greatly
reduced. This problem is particularly pronounced in low-cost
sensors that are typically employed in smartphones or wearable
devices.

Calibration is most important for magnetometers, since
the sensing elements are easily affected by surrounding
ferromagnetic materials and external magnetic fields other than
the earth’s magnetic field. Hence, many calibration algorithms
have been developed for magnetometers. The first calibration
algorithms were based on estimating the biases by comparing
the measured heading to the true heading [10], which requires
knowledge of the latter that might be difficult to obtain.
However, since the measurements of a properly calibrated
sensor that is rotated around its own axes should lie on a sphere,
the magnetometer calibration problem can be considered a

sphere-fitting problem, which can be implemented based on
batch processing [11]–[14] or Kalman filtering [14], [15].
These algorithms do not require an external reference, that
is, the magnetometer can be calibrated without knowledge
of the true heading and inclination. Furthermore, while these
methods were derived for calibration of magnetometers, the
same principle can be used for the calibration of accelerometers.
However, these approaches apply nonlinear transformations to
the noisy measurement data which leads to a biased parameter
estimate [16].

To overcome this problem, the calibration problem can also
be solved using state augmentation in Kalman filtering [17],
[18] or by maximum likelihood estimation [19]. The latter
approach guarantees that the calibration parameters are asymp-
totically unbiased. It can be further improved by formulating
the problem using a state-space model that uses gyroscope
measurements to more accurately estimate the rotation. This
yields a comprehensive calibration method that is able to exploit
and jointly calibrate the complete IMU and magnetometer
measurement system [20]–[22]. Solving the direct maximum
likelihood problem, however, requires solving a nonlinear and
non-convex optimization problem, which is not guaranteed
to converge. Furthermore, Kalman-filtering-based approaches
normally represent the sensor attitude using quaternions, which
can not be handled properly using standard Kalman filtering
due to the unit sphere constraints [23].

This paper addresses some of these drawbacks by proposing a
new calibration method for inertial sensors and magnetometers
based on von Mises–Fisher [24] assumed density filtering and
expectation maximization (EM), which iteratively approximates
the asymptotically unbiased maximum likelihood solution. In
particular, we formulate the calibration problem as a reference
vector tracking problem on the unit sphere using a state-space
model parametrized by the unknown sensor parameters. We
develop a von Mises–Fisher assumed density filter for inference
based on the resulting model and use EM to estimate the
parameters.

The remainder of this paper is organized as follows. Sec-
tion II presents the dynamic and measurement models as well as
the problem formulation. The von Mises–Fisher filter and EM



update are derived in Section III and Section IV, respectively.
The proposed method is evaluated on real data examples in
Section V and some concluding remarks follow in Section VI.

II. MODEL AND PROBLEM FORMULATION

In this section, the systems’ dynamic and sensor models
are derived and the estimation problem is formulated. The
basic underlying assumptions are that there is no significant
translational motion present during the calibration sequence
and that the sensors do not suffer from axis misalignment.
Furthermore, for the magnetometer, we also assume that no
external magnetic disturbances are present.

A. Dynamic Rotation Model for Reference Vectors

Accelerometers and magnetometers can be used to track the
earth’s gravity and magnetic field vectors. In the sensors’ local
coordinate frame, these vectors can be expressed as a scale
factor times a unit reference vector, that is, as

gL(t) = g ra(t),

BL(t) = B rm(t),

where gL(t) and BL(t) are the local gravity and magnetic field
vectors, respectively, ra(t) ∈ R3 with ‖ra(t)‖ = 1 is the unit
vector for the accelerometer, g is the accelerometer scale factor,
and rm(t) ∈ R3 (‖rm(t)‖ = 1) and B are the corresponding
unit vector and scale factor for the magnetic field, respectively.

Furthermore, the dynamic model for rotations of a unit vector
rj(t) (for j ∈ {a,m}) with the local rotational velocity vector
ω(t) is given by [9]

ṙj(t) = −ω(t)× rj(t),
where ṙ(t) denotes the time-derivative of r(t), and a× b is
the cross-product of the vectors a and b.

Assuming that the rotational velocity is constant on the
interval (tn−1, tn] (zero-order hold) such that ω(t) = ωn on
the interval (tn−1, tn], the continuous-time dynamic model has
the discrete-time equivalent [25]

rj,n =

(
I3 + sin(‖ωn‖∆t)

[−ωn]×
‖ωn‖

+(1− cos(‖ωn‖∆t))
[−ωn]2×
‖ωn‖2

)
rj,n−1

= F (ωn) rj,n−1,

(1)

where rj,n , rj(tn) with

F (ωn) , I3 + sin(‖ωn‖∆t)
[−ωn]×
‖ωn‖

+ (1− cos(‖ωn‖∆t))
[−ωn]2×
‖ωn‖2

,

(2)

and [a]× denotes the left cross product matrix of the vector a
such that a× b = [a]×b, which is given by

[a]× =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 .

Note that the dynamic model (1) is norm-preserving, that is,
it is ensured that ‖rj,n‖ = 1.

In practice, the exact rotational velocity ωn is unknown.
Instead, gyroscope measurements yω,n are available and these
measurements can be used in the dynamic model (1). However,
the measurements are noisy and subject to a gyroscope bias,
that is, the gyroscope measurement model is given by

yω,n = ωn + bω + eω,n, (3)

where bω and eω,n are the gyroscope bias and measurement
noise, respectively.

Hence, these two factors have to be taken into account.
Assuming a known bias and zero-mean noise, the dynamic
model can be written as

rj,n ≈ F (yω,n − bω) rj,n−1 (4)

where the approximation is due to the gyroscope measurement
noise. Naturally, the latter needs to be taken into account as
well. Traditionally, this has been done by adding a process
noise term to the dynamic model (4). However, if not done
carefully, this violates the constraint of the dynamic model
being norm-preserving.

Instead, here we propose to use a probabilistic dynamic
model based on the von Mises–Fisher probability density
function (pdf). In particular, we model the dynamics as an
uncertain rotation on the sphere with mean direction given by
the transition equation (4), which yields

p(rj,n | rj,n−1) = VMF(rj,n;F (yω,n − bω) rj,n−1, κj,n)

where p(rj,n | rj,n−1) is the pdf of the dynamic model
and VMF(r;µ, η) denotes the von Mises–Fisher pdf of the
random variable r ∈ Rp such that ‖r‖ = 1 with mean direction
µ, concentration η, and normalization constant Cp(η) given
by (see Appendix A and [24] for more information about the
von Mises–Fisher pdf)

VMF(x;µ, η) = Cp(η)−1 exp(ηµTx).

Next, defining the state as

xn =

[
ra,n
rm,n

]

and noting that the dynamic models for both vectors ra,n
and rm,n are conditionally independent, the dynamic model
becomes

p(xn | xn−1) =
∏

j

p(rj,n | rj,n−1)

=
∏

j

VMF(rj,n;F (yω,n − bω) rj,n−1, κj,n),
(5)

for j ∈ {a,m}.
Finally, we also assume that the initial state is distributed

according to a von Mises–Fisher distribution with pdf

p(x0) =
∏

j

VMF(rj,0;µj,0, ηj,0). (6)



B. Accelerometer and Magnetometer Measurement Models

Assuming negligible translational motion, the measurements
of accelerometers and magnetometers consist of scaled gravity
and magnetic field vectors, sensor biases, and measurement
noise. Additionally, the sensors may also suffer from axis
misalignment (i.e., imperfections in the orthogonality between
the sensors’ x-, y-, and z-axes) [21]. However, the dominating
effects are the sensor biases, and to some extent imperfect scale
factors. Hence, in this paper, we focus on these two parameters,
which yields the measurement models

ya,n = g ra,n + ba + ea,n, (7a)

ym,n = B rm,n + bm + em,n, (7b)

where g and B are the magnitudes of gravity and the magnetic
field, respectively, bj (for j ∈ {a,m}) are the sensor biases,
and ej,n are the measurement noises, which are assumed to be
zero-mean, independent, and identically distributed Gaussian
noises with ej,n ∼ N (0, σ2

j I3). Letting

yn =

[
ya,n
ym,n

]
,

the models in (7) thus give rise to the likelihood

p(yn | xn) =
∏

j

p(yj,n | rj,n)

=
∏

j

N (yj,n;αj rj,n + bj , σ
2
j I3),

(8)

where αa , g and αm , B.
Furthermore, note that the measurement models (7) can also

be written in the form

yj,n = G(rj,n)λj + ej,n

= Gj,nλj + ej,n,

where the matrix Gj,n is

Gj,n , G(rj,n) =
[
rj,n I3

]
, (9)

λa =
[
g bTa

]T
, and λm =

[
B bTm

]T
. This, in turn, also

yields the alternative form of the likelihood

p(yn | xn) =
∏

j

N (yj,n;Gj,nλj , σ
2
j I3). (10)

C. Problem Formulation

Given the dynamic model (5), the measurement model (8)
(together with the alternative formulation (10)), and the
calibration data y1:N = {y1,y2, . . . ,yN}, the objective is
to estimate the IMU and magnetometer model parameters. The
latter are the scale factors g and B, as well as the accelerometer
and magnetometer biases bj , the measurement noise variances
σ2
j , and additionally, the gyroscope bias bω. This yields the

full parameter vector

θ =
[
g bTa σ2

a B bTm σ2
m bTω

]T
.

In order to estimate the unknown parameters θ, we consider
a solution based on the EM algorithm, which approximates the

maximum likelihood estimate of θ by iteratively maximizing
the expected log-likelihood. Specifically, in the kth iteration,
we maximize the expected log-likelihood given the k − 1th
iteration’s parameter estimate θ̂

(k−1)
to find an improved

parameter estimate θ̂
(k)

by maximizing

θ̂
(k)

= argmax
θ

Q(θ, θ̂
(k−1)

)

with

Q(θ, θ̂
(k−1)

) , E{log p(x1:N ,y1:N ;θ) | y1:N}.
Here, p(·;θ) indicates the parametrization of the corresponding
pdf by θ and E{·} denotes the expectation. The latter is with
respect to the smoothing density p(x0:N | y1:N ), which was
calculated using θ̂

(k−1)
.

It can be shown that Q(θ, θ̂
(k−1)

) can be written as [26]

Q(θ, θ̂
(k−1)

) = Q1(θ, θ̂
(k−1)

)+Q2(θ, θ̂
(k−1)

)+Q3(θ, θ̂
(k−1)

),

with

Q1(θ, θ̂
(k−1)

) = E{log p(x0;θ) | y1:N}, (11a)

Q2(θ, θ̂
(k−1)

) =
N∑

n=1

E{log p(xn | xn−1;θ) | y1:N}, (11b)

Q3(θ, θ̂
(k−1)

) =
N∑

n=1

E{log p(yn | xn;θ) | y1:N}. (11c)

These expressions make use of the initial state (6), the dynamic
model (5), and the likelihood (8) (or (10)).

Hence, the objective is to calculate the smoothing distribution
p(x1:N | y1:N ) given the k − 1th iterations parameters
(expectation step) and then maximize the expectations (11)
with respect to the parameters θ (maximization step). The
implementation of these two steps is discussed in the following
sections.

III. VON MISES–FISHER FILTERING

Since the state is composed of the gravity and magnetic
field reference vectors that are constrained on the unit sphere,
a filtering algorithm that takes these constraints into account
should be used. One approach is to use constrained Kalman
filtering algorithms that use normalization of the state to ensure
the constraint is met and project the reference vector onto the
unit sphere [23]. An alternative is to instead consider inference
on the unit sphere itself, which requires a suitable filtering
algorithm [27], [28].

In this paper, we chose this latter option, motivated by the
fact that it systematically accounts for the geometry of the
problem. In particular, we employ a discrete-time von Mises–
Fisher assumed density filtering algorithm that approximates
the filtering posterior of the gravity and magnetic field vectors
according to

p(xn | y1:n) =
∏

j

p(rj,n | y1:n)

≈
∏

j

VMF(rj,n;µj,n|n, ηj,n|n).
(12)



The remainder of this section introduces the prediction and
measurement update steps used to obtain the posterior (12).

A. Prediction

Assume that we are given the assumed filtering density of
the form (12) with parameters µj,n−1|n−1 and ηj,n−1|n−1 at
time step n− 1. Then, the predictive density of xn given the
data y1:n−1 is given by

p(xn | y1:n−1) =

∫
p(xn | xn−1)p(xn−1 | y1:n−1)dxn−1

=
∏

j

∫
VMF(rj,n;F (yω,n − bω) rj,n−1, κj,n) (13)

VMF(rj,n−1;µj,n−1|n−1, ηj,n−1|n−1)drj,n−1,

where we have made used of the dynamic model (5).
Unfortunately, the von Mises–Fisher pdf is not closed under

marginalization. Instead, we have to approximate the predictive
density as

p(xn | yn−1) ≈
∏

j

VMF(rj,n;µj,n|n−1, ηj,n|n−1) (14)

and use maximum likelihood estimation of the VMF param-
eters to calculate the predicted mean direction µj,n|n−1 and
concentration ηj,n|n−1 in (13). These are found through the
predictive mean (see Appendix A and [24])

mj,n|n−1 , E{E{rj,n | rj,n−1} | y1:n−1} (15)
= A3(κj,n)A3(ηj,n−1|n−1)F (yω,n − bω)µj,n−1|n−1

and are given by [24]

µj,n|n−1 =
mj,n|n−1
‖mj,n|n−1‖

, (16a)

ηj,n|n−1 = A−13 (‖mj,n|n−1‖). (16b)

Here, A−1p (x) denotes the solution of the nonlinear equation

Ap(η) = x

for η where Ap(κ) = ∂/∂η logCp(κ) (see Appendix A). This
nonlinear equation can only be solved numerically, and here,
we use the solution method introduced in [29].

B. Measurement Update

Given the von Mises–Fisher prediction (14) together with the
likelihood (8), a closed form measurement update is obtained.
This is given by [27]

p(xn | y1:n) ∝
∏

j

p(yj,n | rj,n)p(rj,n | yj,1:n−1)

∝
∏

j

VMF(rj,n;µj,n|n, ηj,n|n),
(17)

where the parameters of the updated filtering posterior are

ηj,n|n =

∥∥∥∥∥
αj
σ2
j

(yj,n − bj) + ηj,n|n−1µj,n|n−1

∥∥∥∥∥ , (18a)

µj,n|n =

αj

σ2
j
(yj,n − bj) + ηj,n|n−1µj,n|n−1

ηj,n|n−1
. (18b)

Algorithm 1 von Mises–Fisher Filter Update Step
Input: Previous filtering parameters µj,n−1|n−1, ηj,n−1|n−1

and measurements yω,n, yj,n
Output: Updated filtering parameters µj,n|n, ηj,n|n

1: Calculate the predictive means mj,n|n−1 using (15)
2: Calculate the predictive mean direction µj,n|n−1 and

concentrations ηj,n|n−1 using (16)
3: Calculate the filtered mean directions µj,n|n and concen-

trations ηj,n|n using (18)
4: Calculate the marginal likelihood increments p(yn |
y1:n−1) using (19)

Furthermore, during the measurement update, the marginal
likelihood p(y1:n) may also be computed. First, note that the
marginal likelihood can be factorized as

p(y1:n) = p(yn | y1:n−1)p(y1:n−1),

where p(y1:n−1) is the marginal likelihood at the previous
time step and p(yn | y1:n−1) the increment of the current time
step. The latter is calculated using (14) and (8) as (see [27])

p(yn | y1:n−1) =

∫
p(yn | xn)p(xn | y1:n−1)dxn (19)

=
∏

j

C3(ηj,n|n)

C3(ηj,n|n−1)(2πσ2
j )3/2

exp

(
−
‖yj,n − bj‖2 + α2

j

2σ2
j

)
.

This concludes the discrete-time von Mises–Fisher assumed
density filtering algorithm and one complete update step is
shown in Algorithm 1.

As discussed in Section II, in EM, the parameter update
is estimated by maximizing the expected log-likelihood with
respect to the smoothing density p(x0:N | y1:N ). In principle,
this would require to run a smoother. However, in this
application, we propose to approximate the smoothing pdf
using the filtering pdf as

p(xn | y1:N ) ≈ p(xn | y1:n)

=
∏

j

VMF(rj,n;µj,n|n, ηj,n|n). (20)

This is based on the fact that accelerometers and magne-
tometers measure the reference vectors with large scale factors,
which leads to very high concentration parameters ηj,n|n during
filtering, see (18). This implies that the von Mises–Fisher
filtering posterior is highly concentrated and the smoothing
density is practically identical to the filtering density and the
latter can safely be used to approximate Q(θ, θ̂

(k−1)
).

IV. PARAMETER ESTIMATION

As discussed in the problem formulation, the parameters
to estimate are the scale factors g and B as well as the
sensor biases ba, bm, and bω. Additionally, we also estimate
the noise magnitudes σ2

a and σ2
m. In this section, we derive

the necessary estimators that maximize the expected log-
likelihood Q(θ, θ̂

(k−1)
). However, first note that due to the



approximation (20) of the smoothing density, the approximation
of the expected log-likelihood becomes

Q(θ, θ̂
(k−1)

) ≈ E{log p(y1:N ,x0:N ;θ) | y1:n},

which will be used throughout the remainder of this section.

A. Gyroscope Bias

The gyroscope parameters only consist of the bias bω , which
enters the dynamic models for both the gravity and magnetic
field reference vectors, see (5). Hence, in order to maximize
Q(θ, θ̂

(k−1)
) with respect to bω, it is enough to maximize

Q2(θ, θ̂
(k−1)

).
This term is given by

Q2(θ, θ̂
(k)

) ≈
N∑

n=1

E{log p(xn | xn−1;θ) | y1:n}

=
N∑

n=1

∑

j

− logC3(κj,n)

+ E{κj,n(F (yω,n − bω) rj,n−1)Trj,n | y1:n},

which would require the joint density p(xn,xn−1 | y1:n). This
is the joint density of the one-lag smoothing density, and due
to the high concentration of the von Mises–Fisher filtering
posterior discussed in Section III, we approximate this as

p(xn,xn−1 | y1:n) ≈ p(xn | y1:n)p(xn−1 | y1:n−1).

This approximation then leads to

Q2(θ, θ̂
(k)

) ≈
N∑

n=1

∑

j

− logC3(κj,n) (21)

+ κj,n(F (yω,n − bω)mj,n−1|n−1)Tmj,n|n.

It can be seen from the definition of the matrix F (·)
in (2) and (21) that the bias term bω enters the expected
log-likelihood in a highly nonlinear way. Hence, a closed-
form maximization step for this parameter cannot be found
and numerical optimization methods have to be used instead.
Here, we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton method [30].

B. Accelerometer and Magnetometer Parameters

From the likelihood (10) it can be seen that the parameters
of the accelerometer and magnetometer (scale αj , bias bj ,
and noise variance σ2

j ) enter the model in the same way.
Furthermore, since the parameters only affect the likelihood,
maximizing Q(θ, θ̂

(k−1)
) is equivalent to maximizing

Q3(θ, θ̂
(k−1)

) ≈
N∑

n=1

E{log p(yn | xn;θ) | y1:n} (22)

=
N∑

n=1

∑

j

−3

2
log 2πσ2

j −
1

2σ2
j

E{‖yj,n −Gj,nλj‖2 | y1:n},

only, see (10)–(11).

Algorithm 2 Joint IMU and Magnetometer Calibration
Input: Measurements yω,1:N , ya,1:N , ym,1:N , and initial

parameter guess θ̂
(0)

Output: Calibration parameter estimate θ̂
1: while Not converged do
2: for n = 1, 2, . . . , N do
3: Calculate µj,n|n and ηj,n|n using Algorithm 1
4: Calculate zj,n and Hj,n using (25)
5: Calculate

zj,1:n = zj,1:n−1 + zj,n

Hj,1:n = Hj,1:n−1 +Hj,n

6: end for
7: Estimate λ̂(k)j and σ̂2,(k)

j using (23)

8: Estimate b̂
(k)

ω by numerically maximizing (21)
9: end while

10: Set θ̂ ← θ̂
(k)

Taking the gradient of (22) with respect to the parameters
λj =

[
αj bTj

]T
and σ2

j , and then solving the resulting
equation system yields the closed form parameter updates
(see Appendix B)

λ̂
(k)

j = H−1j,1:Nzj,1:N , (23a)

σ̂
2,(k)
j =

1

3N

(
N∑

n=1

yT
j,nyj,n − zTj,1:NH−1j,1:Nzj,1:N

)
, (23b)

where

Hj,1:N =
N∑

n=1

Hj,n, (24a)

zj,1:N =

N∑

n=1

zj,n, (24b)

and

zj,n =

[
A3(ηj,n|n)µT

j,n|n
I3

]
yj,n, (25a)

Hj,n =

[
1 A3(ηj,n|n)µT

j,n|n
A3(ηj,n|n)µj,n|n I3

]
. (25b)

Note that the quantities (24) can be calculated during
the filtering step (expectation step) and thus, the parameter
update (23) can be calculated efficiently once the filtering
step is completed. This yields the full calibration algorithm
summarized in Algorithm 2.

V. RESULTS

In this section, the proposed method is evaluated on real
data for calibration of smartphone IMUs.

A. Experimental Setup

The experimental setup used to evaluate the proposed
method is as follows. We use a Sony Xperia XZ1 smartphone,
which integrates a single-chip IMU (combined accelerometer



and gyroscope) and a magnetometer. We collect data for
three different motion sequences to assess the impact on the
calibration. First, the phone is attached to a block, which is
rotated around all three axes by 90◦ sequentially, placing the
block on all of its faces for 5 s each. Second, starting from
a level position, the phone is tilted ±90◦ around each of its
axes. Third, the phone is rotated freely around all of its axes.
The three datasets are termed block, tilt, and free, respectively.
Each experiment is performed twice, the raw data is recorded
at 100 Hz with the internal compensation algorithms disabled,
and the data is processed offline.

The initial guesses for the biases and scale factors for the
accelerometer and magnetometer are obtained using sphere-
fitting [21] and the initial gyroscope bias is set to zero. The
initial guess for the sensor noise variance σ2

j is set based
on the sample variance of the first ten samples of yj,n and
the parameters of the initial state’s pdf are set as µj,0 =
yj,1/‖yj,1‖ and ηj,0 = 1× 10−3. The concentration parameter
κj,n of the dynamic model is set to κa,n = κm,n = 100. The
EM algorithm is terminated whenever the relative change in
parameter estimate drops below the threshold ε = 1× 10−6 or
after a maximum of K = 100 iterations.

B. Results and Discussion

Table I shows the parameters estimated using the three
different calibration data sets. It can be seen that the estimated
biases and scale factors are of the same magnitude for all three
datasets. The scale factors are both close to their nominal values
of g = 9.819 m/s2 and B = 52.17 µT for Espoo, Finland [31].
The biases for the accelerometer and gyroscope are close to
zero, whereas the bias for the magnetometer is significant
as expected. These results are in line with the identifiability
analysis in [21], where it was concluded that successful
calibration does not require full rotations around all axes. In
particular, the tilt calibration sequence is significantly easier
to perform and reproduce reliably compared to full rotations
but still yields good parameter estimates. The random rotation
sequence, however, may suffer from excessive translational
motion, which decreases the quality of the calibration. This is
also reflected in the estimated sensor noise covariances σ2

a and
σ2
m, which are significantly higher for this calibration sequence,

see also [32].
Furthermore, Table II shows the dataset sizes (number of

samples N ) together with the calibration time (for a non-
optimized implementation in Matlab running on an Intel i5-
8350U 1.7 GHz CPU with 16 GB RAM) and the number of
iterations required for convergence. Naturally, the calibration
time depends on the number of samples and hence varies
greatly between the block and other datasets. However, despite
being much smaller in length, the tilt dataset estimates the
parameters equally well but in considerably less time. The
number of EM iterations on the other hand is similar for
all three datasets. Finally, note that the main computational
bottleneck is the numerical optimization for updating the
gyroscope bias bω, which requires extra iterations compared
to the other parameters.

TABLE I
ESTIMATED PARAMETERS FOR THE THREE CALIBRATION DATASETS.

Parameter Block Tilt Free

g / m/s2 9.88 9.97 10.1

ba / m/s2



0.91
0.20
0.12







0.02
0.09
−0.01







0.1
0.08
−0.65




σ2
a / (m/s2)2 0.33 0.27 2.17
B / µT 50.16 49.5 49.7

bm / µT



−43.4
−0.98
30.5






−43.2
−1.1
30






−43.5
−1.49
30.3




σ2
m / (µT)2 0.43 0.47 1.11

bω / s−1



−0.01

0
−0.02







0
0

−0.03







0
0.02
−0.05




TABLE II
COMPARISON OF THE TRAINING DATASET LENGTHS, COMPUTATIONAL

TIME, AND NUMBER OF EM ITERATIONS.

Parameter Block Tilt Free

N 6776 1405 1614
Time 61.9 s 12.6 s 13.5 s
Iterations 32 30 27

Finally, Fig. 1 shows the cumulative distribution function of
the root mean squared error (RMSE)

eRMSE,n =

√
1

6

∑

j

‖yj,n − ŷj,n|n−1‖2

of the uncalibrated and calibrated models (calibrated using
the block calibration dataset) for all three validation datasets,
where ŷj,n|n−1 is the one step ahead prediction given by

ŷj,n|n−1 , E{yj,n | yj,1:n−1}
= αjAp(ηj,n|n−1)µj,n|n−1.

As expected, the calibration significantly improves the predic-
tive power, lowers the RMSE, and generalizes well from the
calibration to the validation datasets. Also, note that the RMSE
is lower and of the same magnitude for the block (Fig. 1, left)
and tilt (Fig. 1, middle) validation datasets compared to the
free (Fig. 1, right) dataset. This can again be attributed to the
increased translational sensor motion.

VI. CONCLUSIONS

In this paper, we presented a von Mises–Fisher-filtering-
and EM-based method for joint calibration of inertial sensors
and magnetometers. The proposed method exploits the model
structure by considering the problem as a scaled and biased
reference vector tracking problem on the unit sphere. The
resulting algorithm allows for efficient estimation of the
unknown parameters. The main drawback is that in its present
form, the proposed calibration algorithm can not yet make use
of the most complete sensor models (e.g., axis misalignment
or rotations between sensor coordinate frames are neglected).
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Fig. 1. Cumulative distribution functions of the one-step ahead predictions’ RMSEs for the uncalibrated ( ) and calibrated ( ) sensor models for the
block (left), tilt (middle), and free validation datasets.

Thus, future work will focus on improving this shortcoming
to relax some of the model assumptions.

APPENDIX

A. Von Mises–Fisher pdf

The von Mises–Fisher pdf with mean direction µ ∈ Rp :
‖µ‖ = 1 and concentration parameter η for a random variable
r ∈ Rp : ‖r‖ = 1 is defined as [24]

VMF(r;µ, η) = Cp(η)−1 exp(ηµTr), (26)

where

Cp(η)−1 =
ηp/2−1

(2π)p/2Ip/2−1(η)
(27)

is the normalization constant with Ik(x) the modified Bessel
function of the first kind of order k.

The mean of a von Mises–Fisher distributed random variable
is given by [24]

E{r} = Ap(η)µ,

where

Ap(η) =
∂

∂η
logCp(η)

is the derivative of the logarithm of the normalization constant
with respect to the concentration parameter η. Furthermore,
given the mean E{x} = m of a random variable x, the
maximum likelihood estimates of the mean direction and
concentration parameter are [24]

µ =
m

‖m‖ ,

η = A−1p (‖m‖),

where A−1p (‖m‖) denotes the solution of the nonlinear equa-
tion

‖m‖ = Ap(η) (29)

with respect to η.

B. Derivation of the Accelerometer and Magnetometer Param-
eter Updates

In order to maximize Q3(θ, θ̂
(k−1)

) with respect to the
parameters λj and σ2

j , we find the zeros of the gradient

of Q3(θ, θ̂
(k−1)

) and solve for the parameters. From (22) it
follows that the gradient with respect to λj is given by

∇λj
Q3(θ, θ̂

(k−1)
) ≈ ∇λj

N∑

n=1

E{log p(yn | xn;θ) | y1:n}

=
N∑

n=1

E{∇λj
log p(yj,n | rj,n;θ) | y1:n}.

Using (10) for the log-likelihood, the gradient of log p(yj,n |
rj,n;θ) with respect to λj becomes

∇λj log p(yj,n | rj,n;θ) = − 1

σ2
j

GT
j,nyj,n +

1

σ2
j

GT
j,nGj,nλj

and from (9) it follows that

Gj,n =
[
rj,n I3

]
,

GT
j,nGj,n =

[
rTj,nrj,n rTj,n
rj,n I3

]
=

[
1 rTj,n
rj,n I3

]
.

Furthermore, using (17) and the properties of the von Mises–
Fisher pdf (see Appendix A) yields

E{rj,n | y1:n} = A3(ηj,n|n)µj,n|n.

Thus, defining zj,n and Hj,n as in (25), the gradient of

Q3(θ, θ̂
(k−1)

) with respect to λj becomes

∇λj
Q3(θ, θ̂

(k−1)
) =

N∑

n=1

(
1

σ2
j

Hj,nλj −
1

σ2
j

zj,n

)

=
1

σ2
j

Hj,1:Nλj +
1

σ2
j

zj,1:N

with Hj,1:N and zj,1:N as in (24). Finally, setting the gradient
to zero and solving for λj yields (23a).

To find the expression (23b) for the measurement noise
variance σ2

j , the derivative of the log-likelihood with respect
to σ2

j is required. This is given by

∇σ2
j

log(yj,n | rj,n;θ) = − 3

2σ2
j

+
1

2(σ2
j )2
‖yj,n −Gj,nλj‖2



and it follows that

∇σ2
j
Q3(θ, θ̂

(k−1)
) =

N∑

n=1

E{∇σ2
j

log p(yj,n | rj,n) | y1:n}

=

N∑

n=1

− 3

2σ2
j

+
1

2(σ2
j )2

E{‖yj,n −Gj,nλj‖2 | y1:n}.

The remaining expectation is given by

E{‖yj,n −Gj,nλj‖2 | y1:n}
= E{yT

j,nyj,n − 2λT
jG

T
j,nyj,n + λT

jG
T
j,nGj,nλj | y1:n}

= yT
j,nyj,n − 2λT

j zj,n + λT
jHj,nλj ,

where zj,n and Hj,n are again as defined in (25). Hence, the
gradient with respect to σ2

j becomes

∇σ2
j
Q3(θ, θ̂

(k−1)
)

= − 3N

2σ2
j

+
1

2(σ2
j )2

N∑

n=1

yT
j,nyj,n − 2λT

j zj,n + λT
jHj,nλj

= − 3N

2σ2
j

+
1

2(σ2
j )2

(
N∑

n=1

yT
j,nyj,n − 2λT

j zj,1:N

+λT
jHj,1:Nλj

)
.

Substitution of the solution (23a) for λj at the stationary point
yields

∇σ2
j
Q3(θ, θ̂

(k−1)
)

= − 3N

2σ2
j

+
1

2(σ2
j )2

N∑

n=1

yT
j,nyj,n − zTj,1:NH−1j,1:Nzj,1:N ,

and finally, solving for solving for σ2
j yields the update (23b).
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[2] R. Hostettler and S. Särkkä, “IMU and magnetometer modeling for
smartphone-based PDR,” in 7th International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain,
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[26] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, UK:
Cambridge University Press, 2013.

[27] F. Tronarp, R. Hostettler, and S. Särkkä, “Continuous-discrete von Mises–
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