
Rejection-sampling-based ancestor sampling for particle Gibbs

Roland Hostettler and Simo Särkkä

This is a post-print of a paper published in 29th IEEE International Workshop on Machine Learning
for Signal Processing (MLSP). When citing this work, you must always cite the original article:

R. Hostettler and S. Särkkä, “Rejection-sampling-based ancestor sampling for particle
Gibbs,” in 29th IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), Pittsburgh, PA, October 2019

DOI:

10.1109/MLSP.2019.8918852

Copyright:

Copyright 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://dx.doi.org/10.1109/MLSP.2019.8918852

2019 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, OCT. 13–16, 2019, PITTSBURGH, PA, USA

REJECTION-SAMPLING-BASED ANCESTOR SAMPLING FOR PARTICLE GIBBS

Roland Hostettler? and Simo Särkkä†

? Department of Engineering Sciences, Uppsala University, Sweden
E-mail: roland.hostettler@angstrom.uu.se

†Department of Electrical Engineering and Automation, Aalto University, Finland
E-mail: simo.sarkka@aalto.fi

ABSTRACT

Particle Gibbs with ancestor sampling is an efficient and statistically
principled algorithm for learning of dynamic systems. However, the
ancestor sampling step used to improve mixing of the Markov chain
requires the possibly expensive calculation of a set of ancestor weights
for the complete particle system. In this paper, we propose a rejection-
sampling-based algorithm for ancestor sampling in particle Gibbs
that mitigates this problem. Additionally, performance guarantees
and a fallback strategy to prevent suffering from high rejection rates
are discussed. The performance of the method is illustrated in two
numerical examples.

Index Terms— Particle Markov chain Monte Carlo, particle
filters, statistical learning

1. INTRODUCTION

Particle Markov chain Monte Carlo (PMCMC) methods are important
tools for (Bayesian) learning of nonlinear, non-Gaussian dynamic
systems [1]. One particular class of PMCMC methods are particle
Gibbs methods in general and particle Gibbs with ancestor sampling
(PGAS) in particular [1, 2]. These have proven to be useful in several
applications such as learning of Gaussian process state-space mod-
els [3, 4] or learning of latent spatio-temporal Gaussian processes [5],
with applications including finance [6] and target tracking [7].

PGAS is based on Gibbs sampling and alternates between sam-
pling the state trajectory and the static parameters of the dynamic
system, conditioned on the other parameters and the data. To sample
the state trajectory, PGAS uses a Markov kernel based on a particle
filter that also incorporates the last trajectory sample as a reference
trajectory. To improve mixing of the kernel and speed up convergence
of the Markov chain, the reference trajectory is mixed into the new
state trajectories using ancestor sampling [8, 9], which yields the con-
ditional particle filter with ancestor sampling (CPF-AS), see [2]. This
approach is similar to the auxiliary particle filter [10] or backward
simulation smoothing [11] and requires calculating the probability of
two partial state trajectories being connected, referred to as ancestor
weights, a step that is not required in regular particle filtering. Calcu-
lating the ancestor weights can incur significant computational cost,
since the ancestor weights have to be calculated for all the particles
of the conditional particle filter. For Markovian models, this approxi-
mately doubles the computations per time step and for non-Markovian
models, where complete past and/or future state trajectories have to
be evaluated (e.g., in Gaussian process state-space models, see [3]),
the cost can be much higher.

Financial support by the Academy of Finland is gratefully acknowledged.

In this paper, we develop an ancestor sampling step that targets
this bottleneck and improves computational scaling of the ancestor
sampling step. In particular, we propose an ancestor sampling step
based on rejection sampling (RS) rather than sampling from the
categorical distribution of the weights directly. Furthermore, we
provide a lower bound on the RS acceptance probability and develop
a fallback strategy to avoid high rejection rates. In the best case, the
proposed method reduces the computational complexity to sampling a
single ancestor index and in the worst case, the method provides exact
guarantees about the additional computational cost. The proposed
method is evaluated in two numerical examples.

The remainder of this paper is organized as follows. Section 2
introduces the problem formally. The proposed method is developed
in Section 3 and evaluated in Section 4. Finally, concluding remarks
follow in Section 5.

2. PROBLEM FORMULATION

In this paper, we consider Markovian state-space models, that is,
models of the form

x0 ∼ p(x0 | θ), (1a)
xn ∼ p(xn | xn−1, θ), (1b)
yn ∼ p(yn | xn, θ), (1c)

where xn ∈ Rdx and yn ∈ Rdy denote the state and measurement
vectors at time step n, respectively, and θ ∈ Rdθ denotes a vector
of static parameters. Furthermore, p(x0 | θ) denotes the probability
density function (pdf) of the initial state, p(xn | xn−1, θ) is the pdf of
the dynamic model, and p(yn | xn, θ) denotes the likelihood. Finally,
we also assume that the dynamic model is bounded, that is, that

p(xn | xn−1) ≤ κn (2)

for some positive, possibly time-varying constant κn. Note that
PGAS is not restricted to models of the form (1)–(2) but can be
applied to arbitrary inference problems where a sequence of states
x0:N = {x0, x1, . . . , xN} is of interest. However, for simplicity of
the theoretical results, we restrict ourselves to this kind of models.

Given the data y1:N = {y1, y2, . . . , yN}, PGAS can be used to
find a sample approximation of the joint posterior pdf of the parame-
ters θ and state trajectory x0:N given by

p(x0:N , θ | y1:N) ≈
K∑

k=1

δ(θ − θk)δ(x0:N − xk0:N),

978-1-7281-0824-7/19/$31.00 c©2019 IEEE

where δ(·) denotes the Kronecker delta function and the superscript
k denotes the kth sample. This is achieved by iteratively sampling
state trajectories according to xk0:N ∼ p(x0:N | θk−1, y1:N) and
parameters according to θk ∼ p(θ | xk0:N , y1:N).

Sampling new trajectories is achieved by using CPF-AS, a parti-
cle filter that sequentially estimates a particle approximation of the
sequence x0:N

p(x0:N | y1:N) ≈
J∑

j=1

wjNδ(x0:N − xj0:N) (3)

where wjN denotes the trajectory weight (note that for brevity, con-
ditioning on the parameters θ is omitted from here on). To achieve
this, J − 1 trajectories are sampled using sequential importance sam-
pling with resampling as follows [12]. Given an approximation of
the form (3) at step n − 1, the j ∈ {1, . . . , J − 1} trajectories are
resampled and updated by first sampling an auxiliary index

ajn ∼ q(an | x0:n−1, y1:n),

according to a proposal distribution q(an | x0:n−1, y1:n), followed
by sampling the new state

xjn ∼ q(xn | xa
j
n

0:n−1, y1:n)

from the importance distribution q(xn | xa
j
n

0:n−1, y1:n). Then, the J th
trajectory is updated by using the state x̃n of a reference trajectory,
which is the state trajectory sampled in the previous iteration of the
Gibbs sampler, that is, we set xJn = x̃n.

In order to improve mixing of the Markov chain over trajectories,
the sample xJn is then connected to the trajectories up to time n− 1.
This is achieved by calculating the probabilities {w̃jn−1}Jj=1 of the
reference trajectory sample x̃n being a continuation of each of the
j ∈ {1, . . . , J} trajectories xj0:n−1 [2]. Then, the ancestor index
aJn is sampled according to the probabilities {w̃jn−1}Jj=1 and all the
trajectories are updated according to

xj0:n = {xa
j
n

0:n−1, x
j
n}.

The ancestor weights used in this step are given by [2]

w̃jn−1 =
ṽjn−1

η̃n−1
,

where

ṽjn−1 = wjn−1

p(y1:N , x
j
1:n−1, x̃n:N)

p(y1:n−1, x
j
1:n−1)

= wjn−1p(yn:N | xj1:n−1, x̃n:N)p(x̃n:N | xj1:n−1)

(4)

are the non-normalized ancestor weights, and the normalization con-
stant is given by

η̃n−1 =

J∑

j=1

ṽjn−1. (5)

For Markovian state-space models of the form (1), the non-
normalized ancestor weights simplify to [2]

ṽjn−1 = wjn−1p(x̃n | xjn−1). (6)

Algorithm 1 CPF-AS
Input: Reference trajectory x̃0:N
Output: Trajectory sample xk0:N

1: Sample xj0 ∼ p(x0) for j ∈ {1, . . . , J − 1} and set xJ0 ← x̃0
2: Set wj0 = 1/J for j ∈ {1, . . . , J}
3: for n = 1, . . . , N do
4: Sample ajn ∼ q(an | x0:n−1, y1:n) for

j ∈ {1, . . . , J − 1}
5: Sample xjn ∼ q(xn | xa

j
n

0:n−1, y1:n) for
j ∈ {1, . . . , J − 1}

6: Set xJn ← x̃n

7: Sample aJn ∼ C({w̃a
J
n
n−1}JaJn=1)

8: Set xj0:n ← {x
ajn
0:n−1, x

j
n} for j ∈ {1, . . . , J}

9: Calculate and normalize the particle weights using (7)
10: end for
11: Sample j ∼ C({wjN}Jj=1) and set xk0:N ← xj0:N

Finally, for all J samples, the non-normalized trajectory weights
vjn are updated. These are given by [10, 12]

vjn = w
ajn
n−1

p(yn | xjn)p(xjn | xa
j
n
n−1)

q(ajn | x0:n−1, y1:n)q(xjn | xa
j
n

0:n−1, y1:n)
(7)

where wjn−1 is the sample weight at n− 1. From the non-normalized
trajectory weights, the updated sample weights then follow to be

wjn =
vjn∑J
i=1 v

i
n

.

The resulting algorithm is summarized in Algorithm 1 (where
C({wj}Jj=1) denotes the categorical distribution with weights
{wj}Jj=1) and it can be shown that this yields an invariant Markov
kernel over the state trajectories x0:N [2].

As discussed, sampling of the ancestor index in step 7 connects
the reference trajectory x̃0:N to the other trajectories x0:n−1 and
greatly improves mixing of the Markov kernel, see [2] for details.
Sampling of the ancestor indices is typically achieved by calculating
all the ancestor weights w̃jn−1 for j ∈ {1, . . . , J} and then sampling
aJn from the categorical distribution defined by the weights w̃jn−1. For
large numbers of particles J or cases where the ancestor weights are
expensive to calculate (e.g., non-Markovian models, see, e.g., [3, 5]),
this may incur significant computational cost. In this paper, we
develop an algorithm that avoids calculating all the ancestor weights
beforehand and thus lowers the computational cost of this step.

3. METHOD

The main idea of the proposed method is based on the fact that
only one ancestor index is sampled from the distribution defined by
the ancestor weights. Hence, a strategy based on RS that proposes
one sample at a time without calculating all the ancestor weights
beforehand can be used, similar to the approach used to speed up
backward simulation smoothing [13, 14].

In this section, we develop the corresponding ancestor index sam-
pling step. A particular challenge in RS is that the bounding constant
required for calculating the acceptance probability is unknown. To
circumvent this problem, we derive an explicit lower bound on the
acceptance probability (or, equivalently, an upper bound on the RS

bounding constant), making the method practically applicable. We
also propose a fallback algorithm for the case when RS suffers from
high rejection rates.

3.1. RS-based ancestor sampling

As discussed, the ancestor index aJn is typically sampled from the
categorical distribution defined by the ancestor weights, that is, from
the distribution (step 7 in Algorithm 1)

p(aJn | y1:N , x1:n−1, x̃n:N) = C({w̃a
J
n
n−1}JaJn=1)

=
1

η̃n−1

J∑

j=1

ṽjn−1δ(a
J
n − j).

(8)

However, rather than sampling the ancestor index directly from the
categorical distribution, RS can be used to sample the ancestor index
from a different distribution followed by an accept-reject step to
ensure that the sample is from the target distribution (8).

In this case, we sample aJn ∼ q̃(aJn) from a proposal distribution
q̃(aJn) and accept the sample with probability

γ
aJn
n =

p(aJn | y1:N , x1:n−1, x̃n:N)

ρnq̃(aJn)

=

1
η̃n−1

ṽ
aJn
n−1

ρnq̃(aJn)
.

For the constant ρn it must hold that [15]

p(aJn | y1:N , x1:n−1, x̃n:N) ≤ ρnq̃(aJn) ∀ aJn (9)

to ensure that the proposal distribution encloses the target distribution.
However, to maximize the acceptance rate, the bound should also
be as tight as possible. Since the normalization constant η̃n−1 is
unknown (see (4)–(5)) without knowing all the weights, the challenge
is to select the constant ρn. Thus, Lemma 1 provides an upper bound
on the bounding constant, which in turn yields a lower bound on the
acceptance probability, for RS ancestor index sampling.

Lemma 1 (Upper bound on bounding constant for ancestor sampling).
Given the non-normalized ancestor weights {ṽjn−1}Jj=1, the accep-
tance probability for the ancestor index sample aJn drawn from the
proposal distribution q̃(qJn) is bounded from below by

γ
aJn
n ≥

ṽ
aJn
n−1 min q̃(aJn)

q̃(aJn) maxj{ṽjn−1}Jj=1

.

Proof. A conservative choice for ρn that fullfils (9) is given by

ρn =
max p(aJn | y1:N , x1:n−1, x̃n:N)

min q̃(aJn)
.

Furthermore, from (8) it readily follows that

max p(aJn | y1:N , x1:n−1, x̃n:N) =
1

η̃n−1
max
j
{ṽjn−1}Jj=1,

and thus, the upper limit of ρn is given by

ρn =
maxj{ṽjn−1}Jj=1

η̃n−1 min q̃(aJn)
.

Then, the lower bound for the acceptance probability becomes

γ
aJn
n ≥

1
η̃n−1

ṽ
aJn
n−1

q̃(aJn)
maxj{ṽjn−1}Jj=1

η̃n−1 min q̃(aJn)

=
ṽ
aJn
n−1 min q̃(aJn)

q̃(aJn) maxj{ṽjn−1}Jj=1

,

which concludes the proof.

What remains is to choose the proposal distribution q̃(aJn). To
this end, we propose to use a discrete uniform distribution

q̃(aJn) = U{1, J},

which can readily be sampled from and promotes mixing between
the trajectories. Using this proposal distribution, the acceptance
probability bound simplifies to

γ
aJn
n ≥

ṽ
aJn
n−1

maxj{ṽjn−1}Jj=1

. (10)

Note that the lower bound of the acceptance probability (10) is in-
dependent of the normalization constant η̃n−1 but still requires knowl-
edge of all the weights {ṽjn−1}Jj=1 in the denominator. Hence, we
next derive an upper bound on the non-normalized ancestor weights
for Markovian state-space models of the form (1).

3.2. Bound for Markovian state-space models

For Markovian state-space models, the non-normalized ancestor
weights are given by (6). Furthermore, using (2), an upper bound for
the maximum of the non-normalized weights thus follows to be

max
j
{ṽjn−1}Jj=1 = max

j
{wjn−1p(x̃n | xjn−1)}Jj=1

≤ κn max
j
{wjn−1}Jj=1.

Conversely, the lower bound of the acceptance probability (with
uniform proposal as discussed in Section 3.1) becomes

γ
aJn
n ≥

ṽ
aJn
n−1

κn maxj{wjn−1}Jj=1

. (11)

The bound (11) is not only independent of the normalization
constant η̃n−1 but also independent of any (non-normalized) ancestor
weights other than the one of the sampled ancestor index aJn. Thus,
the lower bound of the acceptance probability can be calculated solely
based on the currently sampled (proposed) ancestor index, which
reduces the required computations.

Finally, note that the dynamic model in many state-space models
is an (exactly or approximately) discretized version of an underlying
stochastic differential equation [16, 17]. In this case, the transition
pdf is often a Gaussian pdf of the form

p(xn | xn−1) = N (xn; f(xn−1), Qn)

with mean f(xn−1) and covariance matrixQn. In this case, it readily
follows that the transition pdf is bounded by

κn = (2π)−dx/2|Qn|−1/2.

Algorithm 2 RS ancestor sampling with early stopping

Input: Trajectories and their weights {xj1:n−1, w
j
n−1}Jj=1, bounding

constant κn, reference trajectory sample x̃n
Output: Ancestor index sample aJn

1: Set I = {1, . . . , J} and l = 0
2: do
3: Sample a?n ∼ U{1, J}
4: Calculate ṽa

?
n
n−1 using (6)

5: Calculate γa
?
n
n using (11)

6: Sample u ∼ U(0, 1)

7: if u ≤ γa
?
n
n then

8: Accept sample and set aJn ← a?n
9: end if

10: Set l← l + 1 and I ← I \ {a?n}
11: while Sample not accepted and l < L
12: if Sample not accepted then
13: Calculate ancestor weights ṽjn−1 for j ∈ I
14: Normalize ancestor weights w̃jn−1 =

ṽ
j
n−1∑J

i=1 ṽ
i
n−1

15: Sample aJn ∼ C({w̃jn−1}JaJn=1)

16: end if

3.3. Early stopping and fallback

An important aspect of the proposed method is that the lower bound
of the acceptance probability might be too lose (i.e., too far from the
actual acceptance probability), which in turn leads to a low accep-
tance rate. In the worst case, this might lead to a significantly higher
computational cost than the original strategy of computing all the
ancestor weights and sampling from the resulting categorical distri-
bution. To address this, we propose an early stopping and fallback
strategy similar to [14].

In particular, we allow at most L consecutive RS trials. If none
of the L proposed samples is accepted, we fall back to exhaustive
sampling from the categorical distribution. To make the fallback
strategy as efficient as possible, the non-normalized weights of the
ancestor indices proposed during RS should be stored such that only
the ancestor weights for the remaining indices need to be calculated.
This guarantees that at best, the ancestor sampling step scales ac-
cording to O(1) and at worst according to O(J + L− 1) (whereas
sampling from the categorical distribution always scales according to
O(J)). This yields the ancestor sampling algorithm in Algorithm 2.

4. NUMERICAL ILLUSTRATIONS

In this section, we evaluate the proposed method in a simulation and
real data example.

4.1. Univariate nonlinear growth model

In the first example, we consider the univariate nonlinear growth
model (UNGM) commonly used for benchmarking sequential Monte
Carlo methods given by [18]

p(x0) = N (x0; 0, 5),

p(xn | xn−1) = N
(
xn;

x

2
+

25x

1 + x2
+ 8 cos(1.2n), 10

)
,

p(yn | xn) = N
(
yn;

x2

20
, 1

)
.

20 40 60 80 100
0

5

10

15

l

R
at

e
/%

Fig. 1. Mean percentage together with 2σ-bounds of ancestor indices
sampled using RS as a function of the iteration number l (L = 100).

10−3 10−2 10−1 100
0

1

2

3

4
×10−2

∆γ
aJn
n

Fig. 2. Empirical distribution of the difference ∆γ
aJn
n between the

true acceptance probability and the lower bound (10) together with
its 2σ-bounds.

Since the main interest is in analyzing the behavior of ancestor sam-
pling, all the parameters are assumed known in this case and focus
lies on sampling of the state trajectories.

The parameters of PGAS are chosen as follows. In total, 150
trajectories are sampled of which 50 are discarded as burn-in. Fur-
thermore, J = 100 particles are used in CPF-AS and L = 100 is
used to analyze the behavior of RS with increasing l. (In practice,
it is preferred to chose L � J to avoid excessive computations in
the worst-case scenario.) In total, 100 Monte Carlo simulations with
N = 100 time samples are run.

In this example, the mean root mean squared errors are 1.63
(±0.45) and 1.62 (±0.44) for categorical sampling and RS, respec-
tively. More importantly, in total 95.7 % (±1.4 %) of the ancestor
indices are sampled using RS (within the L = 100 trials) when using
RS. Fig. 1 shows the percentage of RS sampled ancestor indices as a
function of the number of trials l. As it can be seen, a large portion of
the indices is sampled within the first 20 trials (77.0 % in total). This
indicates that RS-based ancestor sampling performs well in this case,
significantly lowering the complexity of this step.

Additionally, Fig. 2 shows the empirical distribution of the dif-
ference between the exact acceptance probability, which requires
knowledge of all the ancestor weights, and its lower bound (10). As
it can be seen, the difference between the bound and the actual ac-
ceptance probability is largely below 0.1 with a large fraction being

smaller than 0.01. Hence, the lower bound (10) is a good approxima-
tion for this model.

4.2. Gaussian process learning

In this example, we consider learning of a temporal Gaussian process
modeling stochastic volatility. In particular, the return yn at time tn
of an asset is modeled as

f(t) ∼ GP(0, k(t, t′; θ)),

p(yn | fn) = N (yn; 0, exp(fn)),

where f(t) is a Gaussian process with covariance function k(t, t′; θ)
modeling the log-volatility and fn , f(tn). We use a sum of two
basic covariance functions, one capturing the long-term behavior
(long length scale), and one capturing the short-term variations (short
length scale) given by

k(t, t′; θ) = kOU(t, t′; θ1) + kOU(t, t′; θ2)

where kOU(·) is the Ornstein–Uhlenbeck covariance function [19]

kOU(t, t′; θ) = σ2 exp

(
−|t− t

′|
`

)

with hyperparameters θ =
[
σ2 `

]T. It has been shown that this
model has an equivalent state-space representation, and thus, it can
efficiently be learned using PMCMC and particle Gibbs, see [5, 20].

In this example, also the hyperparameters θ1 =
[
σ2
1 `1

]T and
θ2 =

[
σ2
2 `2

]T need to sampled, in addition to the state trajectories.
The variances σ2

1 and σ2
2 are sampled directly from their conditional

posteriors, whereas Metropolis-within-Gibbs sampling is used for the
lengthscales `1 and `2, see [5] for details.

This model is applied to the IBM share data for the period January
1993 to December 2003, which consists ofN = 2772 datapoints. We
use J = 250 particles in the particle filter and sample a total of 150
parameter and trajectory samples, of which 50 are discarded as burn-
in. Thus, the posterior is approximated with K = 100 samples. We
compare the results for CPF-AS with (standard) categorical sampling
and the proposed method, where a maximum of L = 20 rejection
sampling trials are used.

Fig. 3 shows the estimated log-volatility (posterior mean of the
sampled trajectories), together with the realized log-volatility (based
on sampling the asset’s price every 5 minutes on the given trade day).
As it can be seen, both methods learn the volatility equally well as no
significant difference is visible. This is also reflected in the root mean
squared errors between the estimated and realized log-volatility that
are 0.69 and 0.63 for categorical- and RS-based ancestor sampling,
respectively.

Furthermore, in this example, 61.6 % of all the ancestor indices
(415 800 in this case) are sampled using RS. Fig. 4 again shows the
percentage of ancestor indices sampled as a function of the iteration
index l. This follows the same pattern as for the UNGM example,
but is cut-off at L = 20 in this case. Again, the majority of ancestor
indices are sampled within the first few RS trials and thus, increasing
L does not increase performance significantly. Finally, Fig. 5 shows
the empirical distribution of the difference between the exact RS
acceptance probability and the lower bound. Again, the difference
in this case is below 0.1 for the vast majority of ancestor indices and
the lower bound is again a good approximation of the acceptance
probability.

500 1,000 1,500 2,000 2,500
−2

0

2

4

6

t

f
(t

)

Realized Categorical RS

1,000 1,100 1,200 1,300 1,400 1,500

0

2

4

t
f

(t
)

Realized Categorical RS

Fig. 3. Realized and estimated log-volatility for the whole data set
(top), and detail view between t = 1000 and t = 1500 (bottom).

5. CONCLUSIONS

In this paper, a method for ancestor sampling in CPF-AS based on RS
has been proposed. The method aims at reducing the computational
complexity of the ancestor index sampling step by only considering
one ancestor index at a time and best- and worst-case guarantees of
the computational complexity have been provided.

The method has shown good performance in the considered ex-
amples, but naturally, it heavily depends on the model under con-
sideration and its parameters. In particular, the provided bounds
might be too loose for some models, which would yield high rejec-
tion rates. Future work will investigate this further and also consider
non-Markovian models, where higher gains can be expected.

6. REFERENCES

[1] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov
chain Monte Carlo methods,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 72, no. 3, pp.
269–342, 2010.

[2] F. Lindsten, M. I. Jordan, and T. B. Schön, “Particle Gibbs with
ancestor sampling,” Journal of Machine Learning Research,
vol. 15, pp. 2145–2184, 2014.

[3] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen,
“Bayesian inference and learning in Gaussian process state-
space models with particle MCMC,” in Advances in Neural
Information Processing Systems 26, 2013, pp. 3156–3164.

[4] A. Svensson and T. B. Schön, “A flexible state-space model for
learning nonlinear dynamical systems,” Automatica, vol. 80, pp.
189–199, 2017.

5 10 15 20
0

2

4

6

l

R
at

e
/%

Fig. 4. Percentage of ancestor indices sampled using RS as a function
of the iteration number l (L = 20).

[5] R. Hostettler, S. Särkkä, and S. J. Godsill, “Rao–Blackwellized
particle MCMC for parameter estimation in spatio-temporal
Gaussian processes,” in 27th IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), Tokyo, Japan,
September 2017.

[6] J. Han, X.-P. Zhang, and F. Wang, “Gaussian process regression
stochastic volatility model for financial time series,” IEEE Jour-
nal of Selected Topics in Signal Processing, vol. 10, no. 6, pp.
1015–1028, September 2016.

[7] J. Kwon, R. Dragon, and L. Van Gool, “Joint tracking and
ground plane estimation,” IEEE Signal Processing Letters,
vol. 23, no. 11, pp. 1514–1517, November 2016.

[8] N. Whiteley, “Discussion on particle Markov chain Monte Carlo
methods,” Journal of the Royal Statistical Society: Series B,
vol. 72, pp. 306–307, 2010.

[9] N. Whiteley, C. Andrieu, and A. Doucet, “Efficient Bayesian
inference for switching state-space models using discrete par-
ticle Markov chain Monte Carlo methods,” Bristol Statistics
Research, Tech. Rep., 2010.

[10] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary
particle filters,” Journal of the American Statistical Association,
vol. 94, no. 446, pp. 590–599, 1999.

[11] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing
for nonlinear time series,” Journal of the American Statistical
Association, vol. 99, no. 465, pp. 156–168, 2004.

[12] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: Fifteen years later,” in Handbook of Nonlinear
Filtering, ser. Oxford Handbooks, D. Crisan and B. Rozovskii,

10−3 10−2 10−1 100
0

1

2

3

4
×10−2

∆γ
aJn
n

Fig. 5. Empirical distribution of the difference ∆γ
aJn
n between the

true acceptance probability and the lower bound (11).

Eds. Oxford, UK: Oxford University Press, 2011, vol. 12, pp.
656–704.

[13] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential
Monte Carlo smoothing for general state space hidden Markov
models,” The Annals of Applied Probability, vol. 21, no. 6, pp.
2109–2145, December 2011.

[14] E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön, “Adap-
tive stopping for fast particle smoothing,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, Van-
couver, BC, Canada, May 2013, pp. 6293–6297.

[15] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An in-
troduction to MCMC for machine learning,” Machine Learning,
vol. 50, pp. 5–43, 2003.

[16] B. Øksendal, Stochastic Differential Equaitons: An Introduction
with Applications, 6th ed. Springer, 2010.

[17] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, UK:
Cambridge University Press, 2013.

[18] G. Kitagawa, “Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models,” Journal of Compu-
tational and Graphical Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[20] S. Särkkä, A. Solin, and J. Hartikainen, “Spatiotemporal learn-
ing via infinite-dimensional Bayesian filtering and smoothing:
A look at Gaussian process regression through Kalman filtering,”
IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 51–61,
July 2013.

