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Rao–Blackwellized Gaussian Smoothing
Roland Hostettler, Member, IEEE, and Simo Särkkä, Senior Member, IEEE

Abstract—In this paper, we consider Rao–Blackwellization of linear
substructures in sigma-point-based Gaussian assumed density smoothers.
We derive marginalized prediction, smoothing, and update steps for the
mixed linear/nonlinear Gaussian state-space model as well as for a hier-
archical model for both conventional and iterated posterior linearization
Gaussian smoothers. The proposed method is evaluated in a numerical
example and it is shown that the computational complexity is reduced
considerably compared to non-Rao–Blackwellized Gaussian smoothers
for systems with high-dimensional linear subspaces.

Index Terms—Gaussian assumed density smoothing, Rao–
Blackwellization, nonlinear smoothing, nonlinear state estimation

I. INTRODUCTION

Gaussian assumed density filtering and smoothing are popular
approaches to approximate Bayesian filtering and smoothing in
nonlinear state-space systems. In these methods, the filtering density
p(xt | y1:t) (where xt is the state vector and y1:t = {y1, y2, . . . , yt}
are the measurements) and the smoothing density p(xt | y1:T ) (for
1 ≤ t ≤ T ) are approximated as Gaussian densities (see, e.g., [1]–[3]).
These approaches have the advantage that only estimating the first two
moments of the posterior densities is required, similarly to the Kalman
filter and Rauch–Tung–Striebel smoother [3]. The resulting moment
matching integrals can be solved numerically using different types
of sigma-point methods such as the third and higher order unscented
transforms [4]–[9], Gauss–Hermite quadratures [1], [2], or spherical
cubatures [4], [10], [11]. In many applications, these approaches are
superior to simple Taylor series-based linearizations [12], [13].

A drawback of sigma-point methods is that even when the state-
space model exhibits a linear substructure, the numerical integration
is performed over the whole state-space. This wastes computational
resources by numerically integrating the analytically tractable subspace.
The aim of this article is to use Rao–Blackwellization to reduce this
computational burden of sigma-point-based Gaussian smoothers. The
use of Rao–Blackwellization is common in the context of sequential
Monte Carlo (SMC) methods (particle filters and smoothers) that
approximate the posterior densities using a set of weighted samples
rather than an assumed density [14]–[17]. In SMC methods Rao–
Blackwellization is used to reduce the number of samples required
for approximating the posterior density.

Rao–Blackwellization has also been considered in Gaussian filtering.
For example, Rao–Blackwellized unscented Kalman filters for non-
mixing and completely mixing conditional linear Gaussian state-space
models were introduced in [18] and [19]. Furthermore, [20] discussed
models with directly and indirectly observed subsets of state variables
as well as linear and nonlinear observations. Similarly, [21] considered
models where only part of the state is observed nonlinearly and
proposes a truncated unscented Kalman filter. A more generalized
approach was presented in [22], where it is assumed that the problem
exhibits a generic conditionally analytically tractable (with respect
to the assumed Gaussian density) substructure. A similar approach
was introduced in [23] in the context of Gauss–Hermite filtering. A
marginalized UKF for correlated process and measurement noises was

Financial support by the Academy of Finland under grants no. #266940
and #295080 is hereby gratefully acknowledged.
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developed in [24]. Finally, a unified view on marginalized Gaussian
filtering from a subspace projection perspective was introduced in [25].

The contribution of this paper is to derive novel Rao–Blackwellized
Gaussian smoothing algorithms for two general classes of models
recently considered in the context of Rao–Blackwellized sequential
Monte Carlo smoothers [17]. As the model classes are more general
than what has previously been considered in the context of Rao–
Blackwellized Gaussian filtering algorithms, the results also extend
the existing results for the Rao–Blackwellized Gaussian filters.
Specifically, the technical contributions of this paper are as follows.
First, we derive statistical linear regression for conditionally affine
transformations of Gaussian random variables. Second, we develop
Rao–Blackwellized Gaussian smoothers and Rao–Blackwellized pos-
terior linearization smoothers [26] for two commonly encountered
models, the fully mixing linear/nonlinear state-space model and a
hierarchical model [17]. Third, we analytically analyze the reduction
of the computational complexity in the proposed method. Fourth,
the proposed methods are evaluated and compared to their non-Rao–
Blackwellized counterparts as well as sequential Monte Carlo methods.

II. PROBLEM FORMULATION

Consider the general nonlinear state-space system

xt = f(xt−1) + qt, (1a)

yt = g(xt) + rt, (1b)

where xt ∈ RNx is the latent state vector with initial density x0 ∼
N (x̂0, P0), qt ∼ N (0, Qt) the Gaussian process noise, f(·) the
dynamic model function, yt ∈ RNy the measurement, rt ∼ N (0, Rt)
the measurement noise, g(·) the measurement function, and t denotes
the discrete time index. Then, the objective of Gaussian smoothing is
to find a Gaussian approximation to the smoothing density

p(xt | y1:T ) ≈ N (xt; x̂t|T , Pt|T ). (2)

In this work, two particular subclasses of the general model (1)
are considered. In both of these classes, the state space can be split
into nonlinear and linear subspaces xnt ∈ RN

n
x and xlt ∈ RN

l
x such

that xt =
[
(xnt )T (xlt)

T
]T

, which yields an analytically tractable
substructure. The first model, Model 1, is a commonly encountered
(see, e.g., [27]–[29]) mixed linear/nonlinear Gaussian state-space
model defined as follows.

Model 1 (Mixed linear/nonlinear Gaussian State-Space Model). The
mixed linear/nonlinear Gaussian state-space model is defined as

xnt = fnt (xnt−1) +Ant (xnt−1)xlt−1 + qnt , (3a)

xlt = f lt(x
n
t−1) +Alt(x

n
t−1)xlt−1 + qlt, (3b)

yt = gt(x
n
t ) +Bt(x

n
t )xlt + rt. (3c)

The noise terms qnt , qlt, and rt are independent zero-mean, Gaussian
random variables with Cov{qnt } = Qn(xnt−1), Cov{qlt} = Ql(xnt−1),
Cov{qnt , qlt} = Qnl(xnt−1), and Cov{rt} = R(xnt ), respectively, and
the initial state is Gaussian according to p(x0) = N (x0; x̂0|0, P0|0).

In this model, the dynamics are mixing, that is, both the nonlinear
and linear states may affect each other (see (3a)–(3b)). Furthermore,
the nonlinear states are observed through some nonlinear function gt(·)
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while the linear states are observed through the measurement matrix
Bt(·). This type of model is frequently encountered in applications
such as target tracking, where, for example, the nonlinear states are the
target’s position that are observed nonlinearly (e.g. range and bearing
measurements) and the linear states are the target’s velocity [28].

The second model is the hierarchical model given below [30]–[32].

Model 2 (Hierarchical Model). The hierarchical model is defined as

xnt = fnt (xnt−1) + qnt , (4a)

xlt = f lt(x
n
t ) +Alt(x

n
t )xlt−1 + qlt, (4b)

yt = gt(x
n
t ) +Bt(x

n
t )xlt + rt, (4c)

where qnt ∼ p(qnt ) with E{qnt } = 0 and Cov{qnt } = Qn(xnt−1),
qlt ∼ N (0, Ql(xnt )), Cov{qnt , qlt} = 0, rt ∼ N (0, R(xnt )), and
p(x0) = N (x0; x̂0|0, P0|0).

Model 2 can be thought of as a generalized jump Markov model.
Here, the linear and nonlinear states do not mix fully: the nonlinear
state affects the linear state but not vice versa. Note that Model 2
is not a special case of Model 1: The difference lies in the linear
dynamics (4b) that depend on xnt rather than xnt−1, while yt depends
on the current state xt in both models. Also note that for Model 2, the
state dynamics for xnt are sometimes given in terms of the transition
density xnt ∼ p(xnt | xnt−1) (see [32]). Here, the functional form is
chosen since it will simplify the derivations later on.

Given these two models, the aim is then to find Gaussian approxi-
mations of the form (2), taking the analytically tractable substructure
into account. Note that the explicit dependence of f , A, Q, g, B, and
R on t and xnt is omitted for the remainder of this paper.

III. GAUSSIAN SMOOTHING

In this section, Gaussian filtering, smoothing, and posterior lin-
earization smoothing are briefly reviewed. First, note that the Rauch–
Tung–Striebel (RTS) smoothing recursion [3], [33] is given by a
recursion backward in time and found from the joint approximation

p(xt, xt+1 | y1:T ) = p(xt | xt+1, y1:t)p(xt+1 | y1:T )

≈ N
([

xt
xt+1

]
;

[
x̂t|T
x̂t+1|T

]
,

[
Pt|T Et
ET
t Pt+1|T

])

by marginalizing with respect to xt+1. The density p(xt | xt+1, y1:t)
is obtained from the joint-approximation p(xt, xt+1 | y1:t) during the
prediction step of a Gaussian filter. This is given by [3]

p(xt, xt+1 | y1:t)

≈ N
([

xt
xt+1

]
;

[
x̂t|t
x̂t+1|t

]
,

[
Pt|t Ct
CT
t Pt+1|t

])
.

(5)

Furthermore, since the recursion is backwards in time, a Gaussian
approximation of the form (2) is given for p(xt+1 | y1:T ). Then, the
well-known RTS smoothing equations [3], [33] are found to be

Gt = CtP
−1
t+1|t, (6a)

x̂t|T = x̂t|t +Gt(x̂t+1|T − x̂t+1|t), (6b)

Pt|T = Pt|t +Gt
(
Pt+1|T − Pt+1|t

)
GT
t , (6c)

Et = GtPt+1|T . (6d)

In order to find the approximation (5), a Gaussian filter has to be run
in forward direction which provides a Gaussian approximation of the
one step ahead prediction density p(xt | y1:t−1). The approximation of
the filtering density p(xt | y1:t) is found from the joint approximation

p(xt, yt | y1:t−1) ≈ N
([
xt
yt

]
;

[
x̂t|t−1

ŷt|t−1

]
,

[
Pt|t−1 Dt
DT
t St

])
(7)

and subsequent conditioning on yt (see, e.g., [3] for details). This
yields the well-known Kalman filter update given by

Kt = DtS
−1
t , (8a)

x̂t|t = x̂t|t−1 +Kt(yt − ŷt|t−1), (8b)

Pt|t = Pt|t−1 −KtStK
T
t . (8c)

Note that the smoothing recursion (6) not only depends on the
means x̂t|t, x̂t+1|t, x̂t+1|T and their respective covariances, but also
the cross-covariance Ct. The latter is not required for filtering alone
but is calculated during the prediction step (see (5)).

The Gaussian approximations in (5) and (7) require us to calculate
the unknown moments x̂t+1|t, Pt+1|t, and Ct as well as ŷt|t−1,
Dt, and St, respectively. These can be found by approximating the
nonlinear state transition and measurement functions (f(·) and g(·))
by using statistical linear regression (SLR) [34]. In regular one-pass
Gaussian smoothing (e.g. [2]), SLR is performed with respect to the
prior densities p(xt−1 | y1:t−1) for the prediction and p(xt | y1:t−1)
for the measurement update. In contrast to regular Gaussian smoothing,
the recently proposed posterior linearization smoothing approach [26]
tries to linearize with respect to the posterior p(xt | y1:T ) directly.
This can lead to significant performance gain in terms of the error
in cases where the prior and posterior overlap poorly. Since the
posterior is unknown to start with, the following iterative scheme
can be used to gradually obtain improved approximations of the
posterior [26]. First, regular smoothing is used to obtain an initial
approximation of the posterior p0(xt | y1:T ) ≈ N (xt; x̂

0
t|T , P

0
t|T ).

Then, the nonlinear functions f(·) and g(·) are linearized using SLR
with respect to p0(xt | y1:T ) and smoothing is done anew in order to
obtain p1(xt | y1:T ). The process is repeated for a predefined number
of iterations or until convergence is achieved.

IV. RAO–BLACKWELLIZED GAUSSIAN SMOOTHING

In this section, the Rao–Blackwellized Gaussian smoothing algo-
rithms for the two models discussed in Section II will be developed.
First, Rao–Blackwellized statistical linear regression of conditionally
affine transformations of Gaussian random variables is derived. This
is then applied to Gaussian filtering and smoothing to obtain the Rao–
Blackwellized prediction and measurement update steps. Note that
similar to the state vector, the covariance matrices can be partitioned
too, such that

Pt|t =

[
Pnt|t Pnlt|t

(Pnlt|t)
T P lt|t

]
(9)

and similar for Pt|t−1, Ct, Dt, Pt|T , and Et.

A. Rao–Blackwellized Statistical Linear Regression

As discussed in the previous section, statistical linear regression can
be used to approximate the nonlinear state transition and measurement
functions [34]. In case these functions exhibit a conditionally affine
substructure, the resulting integrals to be solved can be reduced in
dimensionality since the conditionally affine subspace is analytically
tractable. This is reviewed in Lemma 1, followed by the special
case when SLR is applied with respect to the prior density in
Corollary 1. The latter is the case for traditional Gaussian filtering
and smoothing [3], [13].

Lemma 1 (Rao–Blackwellized Statistical Linear Regression). Let
z2 = h(zn1 ) +H(zn1 )zl1 + v,

p(zn1 , z
l
1) = N

([
zn1
zl1

]
;

[
µn1
µl1

]
,

[
Σn1 Σnl1

(Σnl1 )T Σl1

])
,
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and p(v | zn1 ) = N (v; 0,Σv(zn1 )). Furthermore, let us fix the
linearization density to

π(zn1 , z
l
1) = N

([
zn1
zl1

]
;

[
µn1,π
µl1,π

]
,

[
Σn1,π Σnl1,π

(Σnl1,π)T Σl1,π

])
. (10)

Given these, let

µ̃l1,π = µl1,π + (Σnl1,π)T(Σn1,π)−1(zn1 − µn1,π), (11a)

Σ̃l1,π = Σl1,π − (Σnl1,π)T(Σn1,π)−1Σnl1,π, (11b)

and

µ2,π =

∫
(h+Hµ̃l1,π)π(zn1 )dzn1 , (12a)

Σ12,π =

[
Σn12,π

Σl12,π

]
, (12b)

Σn12,π =

∫
(zn1 − µn1,π)(h+Hµ̃l1,π − µ2,π)Tπ(zn1 )dzn1 , (12c)

Σl12,π = (Σnl1,π)T(Σn1,π)−1Σn12,π + Σ̃l1,π

∫
HTπ(zn1 )dz1, (12d)

Σ2,π =

∫ [
(h+Hµ̃l1,π − µ2,π)(h+Hµ̃l1,π − µ2,π)T

+HΣ̃l1,πH
T + Σv

]
π(zn1 )dzn1 . (12e)

Then, the statistical linear regression of z2 with respect to π(zn1 , z
l
1)

is given by z2 ≈ Φz + Γ + ν, where

Φ = ΣT
12,πΣ−1

1,π, (13a)

Γ = µ2,π − Φµ1,π, (13b)

Σν = Σ2,π − ΦΣ1,πΦT. (13c)

Proof. The matrix Φ and vector Γ are chosen such that they minimize
the error e = h(zn1 ) + H(zn1 )zl1 + v − Φz1 − Γ − ν in the mean
squared sense with respect to (10). This yields (13a)-(13b) (see [34]
for details) where

µ2,π = Eπ{h(zn1 ) +H(zn1 )zl1 + v}, (14a)

Σ2,π = Covπ{h(zn1 ) +H(zn1 )zl1 + v}, (14b)

Σ12,π = Covπ{z1, h(zn1 ) +H(zn1 )zl1 + v}. (14c)

Furthermore, ν ∼ N (0,Σν) with

Σν = Covπ{h(zn1 ) +H(zn1 )zl1 + v} − Φ Covπ{z1}ΦT. (15)

In order to calculate the resulting expectations in (14)-(15), the linear
substructure can now be exploited which yields the integrals

µ2,π = Eπ{Eπ{h(zn1 ) +H(zn1 )zl1 + v | zn1 }}

=

∫
(h(zn1 ) +H(zn1 )µ̃lπ)π(zn1 )dzn1 ,

and similar for Σ2,π , Σ12,π , and Σν , which leads to (12).

Having calculated the linear approximation (12)–(13), the Gaussian
approximation of the joint density p(z1, z2) follows directly to be

p(z1, z2) ≈ N
([
z1

z2

]
;

[
µ1

µ2

]
,

[
Σ1 Σ12

ΣT
12 Σ2

])
(16)

with

µ2 = Φµ1 + Γ, Σ2 = ΦΣ1ΦT + Σν , Σ12 = Σ1ΦT. (17)

Corollary 1. If SLR is done with respect to the prior p(z1) (i.e.
π(z1) = p(z1)), then Σ1,π = Σ1 and µ1,π = µ1. Thus (17) simplifies
to µ2 = µ2,π , Σ2 = Σ2,π , and Σ12 = Σ12,π .

The expectations with respect to π(zn1 ) in (12) are in general not
analytically tractable. Instead, numerical integration schemes such as

sigma-point methods can be used. Here, a set {zn,m1 , wm}Mm=1 of M
sigma-points zn,m1 and their weights wm are calculated analytically
based on the moments of zn1 [3], [13]. Then, an arbitrary expectation
with respect to the density π(zn1 ) can be approximated as

Eπ{h(zn1 )} =

∫
h(zn1 )π(zn1 )dz1 ≈

M∑

m=1

wmh(zn,m1 ). (18)

Choosing the sigma-points can be done according to different
sigma-point rules such as the unscented transform, Gauss–Hermite
quadratures, or spherical cubatures [3], [9].

B. Model 1 Prediction and Smoothing

For Model 1, given the density π(xt−1) = N (xt−1; x̂π, Pπ),
Lemma 1 is applied directly by choosing zn1 = xnt−1, zl1 = xlt−1,
z2 = xt and the covariance matrices accordingly. This yields

x̄t|t−1 = Eπ{f +Ax̃lt−1}, (19a)

P̄t|t−1 = Eπ{(f +Ax̃lt−1 − x̄t|t−1)(f +Ax̃lt−1 − x̄t|t−1)T}
+ Eπ{AP̃ lt−1A

T +Q}, (19b)

C̄nt−1 = Eπ{(xnt−1 − x̂nπ)(f +Ax̃lt−1 − x̄nt|t−1)T}, (19c)

C̄lt−1 = (Pnlπ )T(Pnπ )−1C̄nt−1 + P̃ lt−1 Eπ{A}T, (19d)

for (12) where C̄nt−1 =
[
C̄nnt−1 C̄nlt−1

]
and similar for C̄lt−1, see (9).

The conditional mean x̃lt−1 and covariance P̃t−1 are given by (11) with
µ1,π = x̂π and Σ1,π = Pπ . Furthermore, the regression coefficients
obtained from SLR are

Φt−1 = (C̄t−1)T(Pπ)−1, (20a)

Γt−1 = x̄t|t−1 − Φt−1x̂π, (20b)

Σνt = P̄t|t−1 − Φt−1Pπ(Φt−1)T. (20c)

1) Regular Smoothing: For regular smoothing SLR is performed
with respect to π(xnt−1) = p(xnt−1 | y1:t−1). Hence, x̂π = x̂t−1|t−1

and Pπ = Pt−1|t−1 in (19) and Corollary 1 applies. Thus

x̂t|t−1 = x̄t|t−1, Pt|t−1 = P̄t|t−1, and Ct−1 = C̄t−1. (21)

2) Posterior Linearization Smoothing: For posterior linearization
smoothing, π(xnt−1) = p(xnt−1 | y1:T ). Hence, x̂π = x̂t−1|T and
Pπ = Pt−1|T , while the predictive moments become

x̂t|t−1 = Φt−1x̂t−1|t−1 + Γt−1, (22a)

Pt|t−1 = Φt−1Pt−1|t−1(Φt−1)T + Σνt , (22b)

Ct−1 = Pt−1|t−1(Φt−1)T. (22c)

This leads to the prediction step summarized in Algorithm 1 where
SP(µ,Σ) denotes the generation of sigma-points with respect to the
mean µ and covariance Σ.

C. Model 2 Prediction and Smoothing

For the second model, first note that the prediction for xnt is purely
nonlinear and independent of xlt−1. Thus, x̄nt|t−1, P̄nt|t−1, and C̄nnt−1

are found through SLR with respect to π(xnt−1) and are given by

x̄nt|t−1 = Eπ{fn}, (23a)

P̄nt|t−1 = Eπ
{

(fn − x̄nt|t−1)(fn − x̄nt|t−1)T +Qn
}
, (23b)

C̄nnt−1 = Eπ{(xnt−1 − x̃nπ)(fn − x̄nt|t−1)T}. (23c)

This yields the following approximation

Φnt−1 = C̄nnt−1(P̃nπ )−1, (24a)

Γnt−1 = x̄nt|t−1 − Φnt−1x̃
n
π, (24b)
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Algorithm 1 Prediction Step for Model 1

1: Let {xn,mt−1 , w
m}Mm=1 ← SP(x̂nπ, P

n
π )

2: Calculate x̃l,mt−1 and P̃ lt−1 according to (11) using x̂π and Pπ
3: Calculate

xmt|t−1 =

[
xn,mt|t−1

xl,mt|t−1

]
=

[
fn(xn,mt−1 )

f l(xn,mt−1 )

]
+

[
An(xn,mt−1 )

Al(xn,mt−1 )

]
x̃l,mt−1

x̄t|t−1 =

M∑

m=1

wmxmt|t−1

P̄t|t−1 =

M∑

m=1

wm
[
(xmt|t−1 − x̄t|t−1)(xmt|t−1 − x̄t|t−1)T

+A(xn,mt−1 )P̃ lt−1A(xn,mt−1 )T +Q(xn,mt−1 )
]

C̄nt−1 =

M∑

m=1

wm(xn,mt−1 − x̂nπ)(xmt|t−1 − x̄t|t−1)T

C̄lt−1 = (Pnlπ )T(Pnπ )−1C̄nt−1 + P̃ lt−1

M∑

m=1

wmA(xn,mt−1 )T

4: Calculate x̂t|t−1, Pt|t−1, and Ct−1:
• Regular prediction: (21)
• Posterior linearization prediction: (20) and (22)

Σnνt = P̄nt|t−1 − Φnt−1P̃
n
π (Φnt−1)T, (24c)

where x̃nπ and P̃nπ denote the mean and covariance used in (23).
The prediction for xlt is found from Lemma 1 with zn1 = xnt ,

zl1 = xlt−1, z2 = xlt. This gives

x̄lt|t−1 = Eπ{f l +Alx̃lt−1}, (25a)

P̄ lt|t−1 = Eπ{(f l +Alx̃lt−1 − x̄lt|t−1)(f l +Alx̃lt−1 − x̄lt|t−1)T}
+ Eπ{AlP̃ lt−1(Al)T +Ql}, (25b)

P̄nlt|t−1 = Eπ{(xnt − x̂nπ)(f l +Alx̃lt−1 − x̄lt|t−1)T}, (25c)

C̄llt−1 = (Pnlπ )T(Pnπ )−1P̄nlt|t−1 + P̃ lt−1 Eπ{Al}T. (25d)

The coefficients of the linear approximation are then

Φlt−1 =

[
P̄nlt|t−1

C̄llt−1

]T
(Pπ)−1, (26a)

Γlt−1 = x̄t|t−1 − Φlt−1x̂π, (26b)

Σlνt = P̄n|n−1 − Φlt−1Pπ(Φt−1)T, (26c)

and x̂π and Pπ are the moments used for SLR with respect to the
dynamics of the linear state.

The two moments Clnt−1 and Cnlt−1 do not arise directly from (23)–
(26). However, given the approximation xnt ≈ Φnt−1x

n
t−1 +Γnt−1 +νnt ,

Clnt−1 is found as follows

Clnt−1 ≈ E{(xlt−1 − x̂lt−1|t−1)(xnt−1 − x̂nt−1|t−1)T(Φnt−1)T}
= (Φnt−1P

nl
t−1|t−1)T. (27)

Similarly we have the approximation xlt ≈ Φlt−1xt,t−1 +Γlt−1 +νlt
with xt,t−1 =

[
(xnt )T (xlt−1)T

]T
. Thus, Cnlt−1 becomes

Cnlt−1 ≈ E

{
(xnt−1 − x̂nt−1|t−1)

([
xnt
xlt−1

]
−
[
x̂nt|t−1

x̂lt−1|t−1

])T
}

(Φlt−1)T

=
[
Cnnt−1 Pnlt−1|t−1

]
(Φlt−1)T. (28)

The resulting integrals are with respect to either π(xnt−1) or π(xnt )
(c.f. (23)-(25)) and thus, they need to be calculated in two steps. In
each step, a new set of sigma-points with respect to each of these

densities has to be calculated. Fortunately, the sigma-points with
respect to the density π(xnt ) will be re-used in the measurement
update and thus, in practice, no additional sigma-points are needed.

1) Regular Smoothing: For predicting the nonlinear states xnt ,
the expectations in (23) are evaluated with respect to π(xnt−1) =
p(xnt−1 | y1:t−1). Thus, x̃nπ = x̂nt−1|t−1 and P̃nπ = Pnt−1|t−1. Hence,
Corollary 1 applies, and

x̂nt|t−1 = x̄nt|t−1, Pnt|t−1 = P̄nt|t−1, Cnnt−1 = C̄nnt−1,

Clnt−1 = (Pnlt−1|t−1)T(Pnt−1|t−1)−1(Cnnt−1)T.
(29)

In the second step, the integrals (25) are calculated with respect to
π(xnt , x

l
t−1) = p(xnt , x

l
t−1 | y1:t−1). Thus,

x̂π =

[
x̂nt|t−1

x̂lt−1|t−1

]
, and Pπ =

[
Pnt|t−1 (Clnt−1)T

Clnt−1 P lt−1|t−1

]
, (30)

and the de-correlation is as in (11) with µ1,π = x̂π and Σ1,π = Pπ
from (30). Again, Corollary 1 applies and thus,

x̂lt|t−1 = x̄lt|t−1, P lt|t−1 = P̄ lt|t−1,

Pnlt|t−1 = P̄nlt|t−1, Cllt−1 = C̄llt−1,

Cnlt−1 =
[
Cnnt−1 Pnlt−1|t−1

]([Pnlt|t−1

Cllt−1

]
(Pnt|t−1)−1

)T

.

(31)

2) Posterior Linearization Smoothing: In posterior linearization
smoothing, predicting the nonlinear state is with respect to π(xnt−1) =
p(xnt−1 | y1:T ). Thus, x̃nπ = x̂nt−1|T , P̃nπ = Pnt−1|T , and

x̂nt|t−1 = Φnt−1x̂
n
t−1|t−1 + Γnt−1, (32a)

Pnt|t−1 = Φnt−1P
n
t−1|t−1(Φnt−1)T − Σnvt , (32b)

Cnnt−1 = Pnt|t−1(Φnt−1)T, (32c)

with Φnt−1, Γnt−1, and Σnνt as in (24), and Clnt−1 as given in (27).
When predicting xlt, linearization is performed with respect to

π(xnt , x
l
t−1) = p(xnt , x

l
t−1 | y1:T ) and

x̂π =

[
x̂nt|T
x̂lt−1|T

]
, and Pπ =

[
Pnt|T (Elnt−1)T

Elnt−1 P lt−1|T

]
, (33)

from which the x̃lt−1 and P̃ lt−1 are calculated as in (11) with (33).
Having calculated Φlt−1, Γlt−1 and Σlνt according to (26), the

predicted moments thus become

x̂lt|t−1 = Φlt−1

[
x̂nt|t−1

x̂lt−1|t−1

]
+ Γlt−1, (34a)

P lt|t−1 = Φlt−1

[
Pnt|t−1 (Clnt−1)T

Clnt−1 P lt−1|t−1

]
(Φlt−1)T + Σlνt , (34b)

[
Pnlt|t−1

Cllt−1

]
=

[
Pnt|t−1 (Clnt−1)T

Clnt−1 P lt−1|t−1

]
(Φlt−1)T, (34c)

and Cnlt−1 as in (28).
This yields the prediction step for Model 2 given in Algorithm 2.

D. Measurement Update

Since the structure of the measurement model is the same for both
models (c.f. Eq. (3c) vs. (4c)), ȳt|t−1, D̄t, and S̄t follow directly by
applying Lemma 1 with zn1 = xnt , zl1 = xlt, and z2 = yt. This gives

ȳt|t−1 = Eπ{g +Bx̃lt}, (35a)

D̄n
t = Eπ{(xnt − x̂nπ)(g +Bx̃lt − ȳt|t−1)T}, (35b)

D̄l
t = (Pnlπ )T(Pnπ )−1D̄n

t + P̃ lt Eπ{B}T, (35c)

S̄t = Eπ{(g +Bx̃lt − ȳlt|t−1)(g +Bx̃lt − ȳt|t−1)T}
+ Eπ{BP̃ ltBT +R}. (35d)
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Algorithm 2 Prediction Step for Model 2

1: Let {xn,mt−1 , w
m}Mm=1 ← SP(x̃nπ, P̃

n
π )

2: Calculate

xn,mt|t−1 = fn(xn,mt−1 )

x̄nt|t−1 =

M∑

m=1

wmxn,mt|t−1

P̄nt|t−1 =

M∑

m=1

wm
[
(xn,mt|t−1 − x̄

n
t|t−1)(xn,mt|t−1 − x̄

n
t|t−1)T

+Qn(xn,mt−1 )
]

C̄nnt−1 =

M∑

m=1

wm(xn,mt−1 − x̂nπ)(xn,mt|t−1 − x̄
n
t|t−1)T

3: Calculate x̂nt|t−1, Pnt|t−1, Cnnt−1, and Clnt−1

• Regular prediction: (29)
• Posterior linearization prediction: (24) and (32)

4: Let {xn,mt , wm}Mm=1 ← SP(x̂nπ, P
n
π )

5: Calculate x̃l,mt−1 and P̃ lt−1 according to (11) using x̂π and Pπ
6: Calculate

xl,mt|t−1 = f l(xn,mt ) +Al(xn,mt )x̃l,mt−1

x̄lt|t−1 =

M∑

m=1

wmxl,mt|t−1

P̄ lt|t−1 =

M∑

m=1

wm
[
(xl,mt|t−1 − x̄

l
t|t−1)(xl,mt|t−1 − x̄

l
t|t−1)T

+Al(xn,mt )P̃ lt−1A
l(xn,mt )T +Ql(xn,mt )

]

P̄nlt|t−1 =

M∑

m=1

wm(xn,mt − x̂nπ)(xl,mt|t−1 − x̄
l
t|t−1)T

C̄llt−1 = (Pnlπ )T(Pnπ )−1P̄nlt|t−1 + P̃ lt−1

∑

m=1

wmAl(xn,mt )T

7: Calculate x̂lt|t−1, P lt|t−1, Pnlt|t−1, Cllt−1, and Cnlt−1

• Regular prediction: (31)
• Posterior linearization prediction: (26) and (32)

Furthermore, the conditional variables x̃lt and P̃ lt are again calcu-
lated as in (11). From SLR, Φt, Γt, and Σνt are given by

Φt = (D̄t)
TP−1

π , (36a)

Γt = ȳt|t−1 − Φtx̂π, (36b)

Σνt = S̄t − ΦtPπ(Φt)
T. (36c)

1) Regular Smoothing: In regular smoothing, π(z1) = p(xt |
y1:t−1), that is, x̂π = x̂t|t−1 and Pπ = Pt|t−1. It follows that

ŷt|t−1 = ȳt|t−1, St = S̄t, and Dt = D̄t. (37)

2) Posterior Linearization Smoothing: For posterior linearization
smoothing, π(xnt ) = p(xnt | y1:T ) with mean x̂π = x̂t|T and
covariance Pπ = Pt|T . The moments ŷt|t−1, St, and Dt are thus

ŷt|t−1 = Φtx̂t|t−1 + Γt, (38a)

St = ΦtPt|t−1(Φt)
T + Σνt , (38b)

Dt = Pt|t−1(Φt)
T, (38c)

with Φt, Γt, and Σνt as in (36).
Finally, the measurement update is as summarized in Algorithm 3.

For Model 2, the sigma-points from Step 4) in Algorithm 2 can be
re-used and thus, Step 1) in Algorithm 3 can be omitted.

Algorithm 3 Measurement Update

1: Let {xn,mt , wm}Mm=1 ← SP(x̂nπ, P
n
π )

2: Calculate x̃l,mt and P̃ lt according to (11) using x̂π and Pπ
3: Calculate

ymt|t−1 = g(xn,mt ) +B(xn,mt )x̃l,mt

ȳt|t−1 =

M∑

m=1

wmymt|t−1

D̄n
t =

M∑

m=1

wm(xn,mt − x̂nπ)(ymt|t−1 − ȳt|t−1)T

D̄l
t = (Pnlπ )T(Pnπ )−1D̄n

t + P̃ lt

M∑

m=1

wmB(xn,mt )T

S̄t =

M∑

m=1

wm
[
(ymt|t−1 − ȳt|t−1)(ymt|t−1 − ȳt|t−1)T

+B(xn,mt )P̃ ltB(xn,mt )T +R(xn,mt )
]

4: Calculate ŷt|t−1, Dt, and St:
• Regular smoothing: (37)
• Posterior linearization smoothing: (36) and (38)

5: Calculate x̂t|t and Pt|t according to (8)

Algorithm 4 Rao–Blackwellized Gaussian Smoother

1: for t = 1, . . . , T do . Filtering
2: Calculate and store x̂t|t−1, Pt|t−1, and Ct−1:

• Model 1: Algorithm 1
• Model 2: Algorithm 2

3: Calculate and store x̂t|t, Pt|t, and Dt (Algorithm 3)
4: end for
5: for t = T − 1, . . . , 1 do . Smoothing
6: Calculate x̂t|T , Pt|T , and Et according to (6)
7: end for

E. Filtering, Smoothing, and Posterior Linearization Smoothing

Having developed the prediction and update steps for both models,
the complete algorithm can now be formalized. First, filtering is
achieved by simply alternating between prediction and measurement
update at each time step over the whole dataset. After filtering,
smoothing is performed by a backward sweep over the filtered data,
implementing the Rauch–Tung–Striebel smoothing equations. This
yields the Rao–Blackwellized Gaussian smoother in Algorithm 4.

Finally, posterior linearization smoothing is achieved by first running
Algorithm 4 to obtain p0(xt | y1:T ), followed by re-linearization and
iteratively improving the posterior approximation (Algorithm 5).

F. Computational Complexity

One of the main reasons for considering Rao–Blackwellization in
the context of Gaussian filtering and smoothing is the reduction of the
computational complexity when the dimension of the conditionally
linear subspace is large. Since the proposed methods are based on
Lemma 1, we start by analyzing the computational complexity of
regular SLR and Rao–Blackwellized SLR with respect to the linear
subspace dimension N l

1, which is provided in Lemma 2 below.

Lemma 2 (Computational Complexity of Rao–Blackwellized Sta-
tistical Linear Regression). Let z2 = h(zn1 ) + H(zn1 )zl1 + v be a
conditionally affine transformation of the Gaussian random variable
z1 =

[
(zn1 )T (zl1)T

]T
, where zn1 ∈ RN

n
1 , zl1 ∈ RN

l
1 , z2 ∈ RN2 ,

and N1 = Nn
1 + N l

1. Then the asymptotic (in N l
1) computational



6

Algorithm 5 Rao–Blackwellized Posterior Linearization Smoother

1: Run Algorithm 4 to obtain p0(xt | y1:T ) and set i← 0
2: do
3: for t = 1, . . . , T do . Filtering
4: Calculate and store x̂i+1

t|t−1, P i+1
t|t−1, and Ci+1

t−1 :
• Model 1: Algorithm 1
• Model 2: Algorithm 2

5: Calculate and store x̂i+1
t|t , P i+1

t|t , and Di+1
t (Algorithm 3)

6: end for
7: for t = T − 1, . . . , 1 do . Smoothing
8: Calculate and store x̂i+1

t|T , P i+1
t|T , and Ei+1

t according to (6)
9: end for

10: Set i← i+ 1
11: while Not converged

Table I: Comparison of the asymptotic computational complexity for
SLR and Rao–Blackwellized SLR (RB-SLR).

Calculation SLR O(·) RB-SLR O(·)
Sigma-points N3

1 (Nn
1 )3

Orthogonalization n/a MN l
1N

n
1 + (N l

1)2Nn
1

zm2 , Σmv M(Ch + CH + CΣ) M(Ch + CH + CΣ)
+MN2N l

1 +MN2N l
1

µ2,π MN2 MN2

Σ2,π MN2
2 M(N l

1)2N2 +MN l
1N

2
2

Σ12,π MN1N2 MN l
1N2 + (N l

1)2N2

Φ N3
1 N3

1
Γ N2

1N2 N2
1N2

Σν N2
1N2 +N1N2

2 N2
1N2 +N1N2

2
µ2 N2

1N2 N2
1N2

Σ2 N2
1N2 +N1N2

2 N2
1N2 +N1N2

2
Σ12 N2

1N2 N2
1N2

complexity of calculating the transformed moments µ2, Σ12, and Σ2

using M sigma-points scales according to O(MN l
1N2 + (N l

1)3) for
regular SLR and O((N l

1)2N2 + (N l
1)3) for Rao–Blackwellized SLR.

Proof. Regular SLR has the following main steps: 1) Calculating
the sigma-points, 2) evaluating the functions h(zn1 ) +H(zn1 )zl1 and
Σv(zn1 ) (M times each), 3) calculating sums over M terms to
obtain µ2,π , Σ12,π , and Σ2,π , 4) calculating the linear approximation
Φ, Γ, Σν , and 5) calculating the moments µ2, Σ2, Σ12. Rao–
Blackwellized SLR has the additional step of calculating the Gram–
Schmidt orthogonalization (11). Furthermore, the sums for calculating
Σ2,π and Σ12,π include more terms.

The asymptotic complexity for each of these steps is shown in
Table I, where Ch, CH , and CΣ denote the complexity of evaluating the
functions h(·), H(·), and Σv(·). First, note that calculating the sigma-
points is independent of N l

1 for Rao–Blackwellized SLR. Second,
the complexity of the sums for calculating µ2,π , Σ2,π , and Σ12,π is
dominated by the calculation of the covariance matrices. For regular
SLR, this scales according to MN2

2 +MN1N2 where the first term
comes from the outer product involved in calculating Σ2,π and the
second term from calculating Σ12,π . Noting that M scales at least
linearly in N l

1 and that N2 may also scale linearly in N l
1 (for the

prediction step), it follows that the overall complexity of implementing
the sums scales according to MN l

1N2.
For Rao–Blackwellized SLR (Lemma 1), the most expensive

operations in implementing the integrals (12) using sigma-points
are again computing Σ2,π and Σ12,π . Here, the complexity is
dominated by the product H(zn,m1 )Σ̃l1,πH(zn,m1 )T which requires
M(N l

1)2N2 +MN l
1N

2
2 operations. Since M is independent of N l

1

in this case, this scales according to (N l
1)2N2 at most.

Implementing (13) and (17) requires the same computations,
irrespective of whether Rao–Blackwellization is used or not. Here, the
most complex operations are calculating the inverse (or Cholesky fac-
torization) of an N1×N1 matrix when calculating Φ (N3

1 operations)
and calculating ΦΣ1ΦT when calculating Σ2 (N2

1N2 +N1N
2
2 ). This

is in addition to the cost for calculating the sums. Thus, the overall
computational complexity becomes O(MN l

1N2 + (N l
1)3) for regular

SLR and O((N l
1)2N2 + (N l

1)3) for Rao–Blackwellized SLR.

Given the asymptotic computational complexity for regular and
Rao–Blackwellized SLR in Lemma 2, Corollary 2 is readily found.

Corollary 2. The asymptotic computational complexity for sigma-
point-based SLR where the number of sigma-points is an affine function
M = αN l

1 + β is O((N l
1)2N2 + (N l

1)3) for both regular and Rao–
Blackwellized SLR. Then, the ratio between nonlinear and linear
states as well as the cost for evaluating the functions h(·), H(·), and
Σv(·) determine which method is faster. Conversely, if the number of
sigma-points increases faster than linear, the asymptotic complexity
of Rao–Blackwellized SLR is always lower.

It follows that for the third order unscented transform (M =
2N + 1), the constants determine which method is faster, whereas
for higher order methods, such as the fifth order unscented transform
(M = 2N2 + 1) or the Gauss–Hermite quadrature (M = pN ), Rao–
Blackwellization is beneficial for systems with high-dimensional linear
subspaces.

Finally, the overall complexity of the proposed methods is given
in Lemma 3.

Lemma 3 (Computational Complexity of Rao–Blackwellized Gaus-
sian Smoothing). For Algorithm 4 and Algorithm 5, the asymp-
totic computational complexity with respect to N l

x is O((N l
x)3)

and the computational complexity for the corresponding non-Rao–
Blackwellized smoothers is O(M(N l

x)2 + (N l
x)3)

Proof. First, note that the prediction for Model 1 is a direct application
of Lemma 1 with N1 = N2 = Nx with no additional operations.
Hence, the total computational complexity of Algorithm 1 readily
follows to be O((N l

1)3). For Algorithm 2 (prediction for Model 2),
the nonlinear state is predicted in a regular prediction step with
N1 = N2 = Nn

1 which is independent of N l
1 and thus has constant

cost. For predicting the linear state, Lemma 1 is applied with N1 = Nx
and N2 = N l

x and thus, the complexity is again O((N l
x)3), The

measurement update (Algorithm 3) is again a direct application
of Lemma 1 with N1 = Nx and N2 = Ny . Hence, SLR scales
according to O((N l

x)2) for regular filtering while it scales according
toO((N l

x)3) for posterior linearization filtering/smoothing (due to (13)
and (17) which scale according to O((N l

x)3)). Furthermore, the
measurement update (8) is done, which has the complexity O(N2

x)
due to the covariance update. The backward pass for smoothing just
adds the Rauch–Tung–Striebel smoothing calculations in (6). Here,
the most expensive operations are calculating the gain Gt and the
covariance matrices Pt|T and Et which all scale according to O(N3

x).
Thus, it follows that the overall asymptotic computational complexity
in N l

x for Rao–Blackwellized Gaussian smoothing for Model 1 as
well as Model 2 is O((N l

x)3).
Similarly, for non-Rao–Blackwellized smoothing, it follows from

Lemma 2 that the prediction step for both Model 1 and Model 2
scale according to O(M(N l

x)2 + (N l
x)3). Furthermore, the regular

measurement update scales asO(MN l
x+(N l

x)3), while the smoothing
recursion is the same as for Rao–Blackwellized smoothing (i.e.
O(N3

x)). Thus, the overall computational complexity for non-Rao–
Blackwellized smoothing is O(M(N l

x)2 + (N l
x)3).
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V. NUMERICAL ILLUSTRATIONS

A. Setup

In order to illustrate the proposed method, a system of harmonic
oscillators with unknown, time-varying frequency is considered. This
system allows for simple extension to higher order linear state-spaces
by just considering higher order harmonics. The model is given by

xnt = xnt−1 + qnt , (39a)

xlt = Al(xnt−1)xlt−1 + qlt, (39b)

yt = Bxlt−1 + rt. (39c)

The matrices Al and B in (39) are

F (ω) =

[
cos(ωTs) − sin(ωTs)
sin(ωTs) cos(ωTs)

]
,

Al(xnt ) = blkdiag(F (xnt ), F (2xnt ), . . . , F (N l
x/2x

n
t )),

B =
[
1 0 1 0 . . . 1 0

]
,

and Ts = 0.05 s is the sampling time.
The process and measurement noise covariances are chosen as

Q = 0.01INl
x+1 and R = 0.1, respectively. The number of harmonics

is varied from 1 to 5, which yields N l
x = 2, 4, . . . , 10. For each case,

T = 100 samples are generated and 100 Monte Carlo runs are
performed. As performance measures, the time-averaged root mean
squared error (RMSE) is calculated over all Monte Carlo simulations.
Additionally, the computational time per sample is measured. The
algorithms are implemented in m-code in Matlab and the simulations
are run on a 3.4 GHz 3rd generation Intel Xeon E3 CPU with 16 GB
RAM. We compare the following five filtering methods:

• An unscented Kalman filter (UKF) [35],
• a Rao–Blackwellized unscented Kalman filter (RB-UKF),
• a Gauss–Hermite filter (GHF) of order p = 3,
• a Rao–Blackwellized Gauss–Hermite filter (RB-GHF),
• a Rao–Blackwellized particle filter [16] with Mf = 250 particles

(RB-PF),

as well as the corresponding smoothers, that is,

• an unscented Rauch–Tung–Striebel smoother (URTSS) [6],
• a Rao–Blackwellized unscented Rauch–Tung–Striebel smoother

(RB-URTSS),
• a Gauss–Hermite smoother (GHS),
• a Rao–Blackwellized Gauss–Hermite smoother (RB-GHS),
• a Rao–Blackwellized forward-filtering backward-simulation parti-

cle smoother [17] with Mf = 250 filter and Ms = 100 smoother
particles (RB-FFBSi).

B. Results and Discussion

Fig. 1 (top) illustrates the RMSE of the compared methods as a
function of N l

x. As it can be seen, all filters perform roughly equally
well, with a slightly lower RMSE for the UKF and RB-PF for higher
dimensions compared to the remaining filters. However, there is no
difference between the GHF and the RB-GHF. Furthermore, Fig. 1
(bottom) depicts the time required for one complete filter update
(time and measurement update). Here, the differences are obvious and
striking. The computational load increases exponentially for the GHF
and cubically for the RB-GHF, while it increases cubically for both
the UKF as well as the RB-UKF but at a slower rate for the latter.

The results for smoothing are shown in Fig. 2. Similar to filtering,
there is no significant difference in the RMSE for the different
smoothers (Fig. 2, top) with the Gaussian smoothers performing
slightly better than the particle smoother. The significant difference
is again in the computational time (Fig. 2, bottom). For the Gaussian
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Figure 1: Time-averaged RMSE (top) and average filter update time
per sample (bottom) for the UKF ( ), RB-UKF ( ), GHF
( ), RB-GHF ( ), and the RB-PF ( ).
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Figure 2: Time-averaged RMSE (top) and average smoother update
time per sample (bottom) for the URTSS ( ), RB-URTSS ( ),
GHS ( ), RB-GHS ( ), and the RB-FFBSi ( ).

smoothers, the results from filtering carry over since only little
overhead is added by the backward recursion (see Algorithm 4).

As shown in Section IV-F, the significant increase in computational
time observed for the GHF and UKF are directly related to the number
of sigma-points. For the Gauss–Hermite quadrature used in the GHF,
the number of sigma-points scales as O(pNx) and for the third order
unscented transform used here, it scales as O(2Nx+1). By using Rao–
Blackwellization, the number of sigma-points only depends on the size
of the nonlinear subspace Nn

x , which is constant in this example. This
yields the reduction of computational complexity from exponential
to cubic for the RB-GHF and RB-GHS. For the unscented filter
and smoother, the scaling remains cubic, but the Rao–Blackwellized
version is still faster. Closer inspection showed that evaluating Al is
one of the most expensive operations in this case (evaluating the sine
and cosine functions). Thus, since the Rao–Blackwellized smoother
requires less function evaluations, it is faster in this case.

The results also indicate that the RMSE is not affected significantly
by the Rao–Blackwellization for the compared methods. Furthermore,
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note that while the RB-PF is slightly superior in terms of RMSE,
the RB-FFBSi is not. This is due to a particular combination of the
considered model and the way the backward simulation smoother
works: Frequency estimation schemes (e.g. phase-locked loops) require
some time to converge to the correct frequency. For particle methods,
this means that the individual state trajectories during forward filtering
may be relatively far from the true trajectory. When performing
backward simulation, the RB-FFBSi smoother is limited to sample
from these trajectories and can not do better than the best trajectory.
The Gaussian smoothers on the other hand re-estimate the smoothed
state freely, which turns out to be better in this case.

The dimension of the nonlinear state might be different in the
dynamic and observation models, as in the example considered in this
section. In such cases, the algorithms may be further improved by
only considering the respective nonlinear subspaces and do exact
(conditional) updates for the remaining states. Finally, we have
assumed that the system does not suffer from delayed or out-of-
sequence measurements. If such delays are present, the method can be
extended by, for example, using approaches similar to [36] or [37].

VI. CONCLUSIONS

In this paper, Gaussian smoothers with analytically tractable con-
ditional linear substructures were developed and their computational
complexity was analyzed. The framework is general in the sense
that it can be used together with any sigma-point based Gaussian
filtering/smoothing algorithm such as the unscented Rauch–Tung–
Striebel smoother or Gauss–Hermite quadrature-based smoothers. The
simulations showed that a significant performance gain in terms of
computational efficiency can be achieved, even for low-dimensional
linear subspaces. Hence, it is useful to use Rao–Blackwellization not
only to reduce the computational burden but also to enable the usage of
otherwise computationally prohibitive methods such as Gauss–Hermite
quadratures for higher dimensional systems.
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