
Rao–Blackwellized Posterior Linearization Backward SLAM

Ángel F. Garćıa-Fernández, Roland Hostettler, and Simo Särkkä

This is a post-print of a paper published in IEEE Transactions on Vehicular Technology. When
citing this work, you must always cite the original article:

A. F. Garćıa-Fernández, R. Hostettler, and S. Särkkä, “Rao–Blackwellized posterior
linearization backward simultaneous localization and mapping,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 5, pp. 4734–4747, May 2019

DOI:

10.1109/TVT.2019.2903569

Copyright:

Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://dx.doi.org/10.1109/TVT.2019.2903569

1

Rao-Blackwellised posterior linearisation backward
SLAM

Ángel F. García-Fernández, Roland Hostettler, Member, IEEE, Simo Särkkä, Senior Member, IEEE

Abstract—This paper proposes the posterior linearisation
backward simultaneous localisation and mapping (PLB-SLAM)
algorithm for batch SLAM problems. Based on motion and
landmark measurements, we aim to estimate the trajectory of the
mobile agent and the landmark positions using an approximate
Rao-Blackwellised Monte Carlo solution, as in FastSLAM. PLB-
SLAM improves the accuracy of current FastSLAM solutions
due to two key aspects: smoothing of the trajectory distribution
via backward trajectory simulation and the use of iterated
posterior linearisation to obtain Gaussian approximations of the
distribution of the landmarks. PLB-SLAM is assessed via nu-
merical simulations and real experiments for indoor localisation
and mapping of radio beacons using a smartphone, Bluetooth
beacons, and Wi-Fi access points.

Index Terms—Simultaneous localisation and mapping, back-
ward simulation, posterior linearisation, Rao-Blackwellisation,
Bluetooth beacons, Wi-Fi access points, smartphone.

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) consists
of inferring the states of a mobile agent and static land-
marks based on sensor measurements, which can be taken
by the mobile agent and/or the landmarks, depending on the
application. SLAM was developed in the robotics area [1]
but also has important applications in related fields such as
computer vision [2], [3], autonomous driving [4], unmanned
aerial vehicles [5], and target tracking and localisation [6], [7].
With the widespread use of smartphones and ubiquitous radio
beacons, such as Wi-Fi access points, Bluetooth beacons and
radio-frequency identification (RFID) tags [8]–[13], SLAM
techniques can also be used to localise a smartphone (agent)
and map these signal sources (landmarks). This application
of SLAM is specially important in indoor localisation, where
global positioning system does not work well.

The SLAM problem is usually posed in a Bayesian frame-
work [1]. Here, all information regarding the agent trajectory
and the map is given by the conditional density of the agent
trajectory and the map given the measurements, which is

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
A. F. García-Fernández is with the Department of Electrical Engineering and
Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom.
He is also with the ARIES Research Center, Universidad Antonio de Nebrija,
Madrid, Spain (email: angel.garcia-fernandez@liverpool.ac.uk). R. Hostettler
and S. Särkkä are with the Department of Electrical Engineering and Au-
tomation, Aalto University, 02150 Espoo, Finland (emails: {roland.hostettler,
simo.sarkka}@aalto.fi).

Financial support by the Academy of Finland under grant number 295080
(CrowdSLAM) is hereby gratefully acknowledged. The authors would also
like to thank IndoorAtlas for providing the data of the Wi-Fi experiments.

referred to as posterior density. In practice, due to non-
Gaussian/nonlinear models, this density cannot be calculated
in closed-form so it is approximated. An a priori simpler
option is to just focus on the marginal posterior density of the
agent state at the current time, instead of the trajectory, and
the map. This marginal posterior density considers a variable
with lower dimensionality (agent state at the current time vs.
trajectory) but contains less information than the posterior
density that includes the trajectory. The marginal posterior can
be approximated using Bayesian filtering techniques [14], such
as the extended Kalman filter (EKF), as in EKF-SLAM [1], or
the unscented Kalman filter (UKF), as in UKF-SLAM [15].

Nevertheless, the posterior density over the trajectory and
the map factorises in a way that is quite appealing for
computation. Given the agent trajectory and the measure-
ments, the density of each landmark becomes independent of
the rest [16], [17]. FastSLAM exploits this factorisation by
using an approximate Rao-Blackwellised particle filter [18].
In this algorithm, the posterior density over the trajectory
is represented by weighted trajectory samples, and, for each
trajectory sample, the density of the landmark is approximated
as a Gaussian, which can be obtained using Gaussian filtering
methods such as the EKF [16], [17] or the UKF [19].

In fact, these Gaussian filters approximate the nonlinear
functions as affine functions plus Gaussian noise, which rep-
resents the linearisation error [20]. For example, the EKF lin-
earises the measurement function while filtering using Taylor
series around the predicted mean, while the UKF linearises
the measurement function using statistical linear regression
(SLR) with respect to the predicted density. The quality
of the FastSLAM approximation therefore depends on how
accurately the particles represent the trajectory posterior and
how accurately the measurement functions are linearised for
each trajectory sample. However, neither of these two types of
approximations in FastSLAM properly takes into account all
measurements when performing these approximations so there
is room for improvement. First, particle filters severely suffer
from path degeneracy for long time sequences [18]. That is,
for long enough time sequences, all trajectory samples have
one single ancestor at some point in the past. Second, the
measurement function linearisations used by Kalman-filter-
type algorithms, such as the EKF or UKF, do not take into
account all received measurements [20].

In this paper, we address the two above-mentioned weak-
nesses of FastSLAM in a batch solution to the SLAM problem,
in which the considered time frame is fixed. We first propose
the use of backward simulation, which is based on running a
particle filter forward and then a backward pass, to obtain non-

degenerate trajectory samples [21]–[23]. Backward simulation
for SLAM was used in [24], though only for linear measure-
ment models. An approximate Rao-Blackwellised smoother
for nonlinear models is introduced in [22], although the
solution requires the introduction of artificial priors. Instead,
in this paper, we develop a backward simulator for SLAM
that aims to use the optimal linearisations of the nonlinear
measurement functions in mean square error sense for each
trajectory sample, without artificial priors. This linearisation
will turn out to be essential for accurate landmark estimation.

That is, once we have addressed the problem of trajectory
degeneracy using backward simulation, approximate Rao-
Blackwellisation requires the linearisation of the measurement
functions for the new trajectory samples. In this paper, we
propose the use of the posterior linearisation technique [20],
[25] to select such a linearisation. In posterior linearisation,
the idea is to obtain the best possible linearisation of the
nonlinear functions in a mean square error sense by taking
all measurements into account. The linearisation parameters
and the Gaussian noise, which characterises the approximation
error, are given by SLR with respect to the posterior. Since
we do not have access to the posterior, practical posterior
linearisation techniques use an iterated scheme, in which we
linearise the nonlinearities with respect to the current posterior
approximation to obtain a new posterior approximation, which
will be used in the next iteration.

The resulting SLAM algorithm that integrates backward
simulation and posterior linearisation is referred to as posterior
linearisation backward SLAM (PLB-SLAM). PLB-SLAM is
analysed in numerical simulations and in real indoor experi-
ments in which we apply SLAM to track a pedestrian holding
a smartphone and map the locations of Bluetooth beacons and
Wi-Fi access points.

The rest of the paper is organised as follows. We formulate
the problem in Section II. We review FastSLAM imple-
mentations based on sigma-points in Section III. Posterior
linearisation backward SLAM is explained in Section IV. We
show simulation and experimental results in Sections V and
VI, respectively. Finally, conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

In this paper, we aim to estimate the (mobile) agent state
at all time steps and the landmark positions given all mea-
surements taken by the agent. We pose this problem in the
Bayesian framework in Section II-A and explain the type of
solution we seek in this paper in Section II-B.

A. SLAM problem

The agent state at time k is xk ∈ Rnx , which usually
contains kinematic information such as position and veloc-
ity in a 2-D or 3-D environment. Furthermore, we assume
there are M landmarks such that the multi-landmark state is
m =

[(
m1
)T
, ...,

(
mM

)T]T
, where mj ∈ Rnm is the state of

the jth landmark, which usually denotes its position. At each
time step, the agent takes a measurement of each landmark and
we assume that the correspondence between measurements
and landmarks is known [16]. For instance, this association

is known if landmarks are beacons or Wi-Fi access points, as
in our experimental set-up in Section VI.

The measurement zjk ∈ Rnz at time k from landmark j is

zjk = h
(
xk,m

j
)

+ rjk (1)

where h (·) is a given function and rjk is independent zero-
mean Gaussian noise with covariance matrix Rj

k. This mea-
surement model gives rise to the likelihood p

(
zjk | xk,mj

)
=

N
(
zjk;h

(
xk,m

j
)
, Rj

k

)
, which denotes a Gaussian density

with mean h
(
xk,m

j
)

and covariance matrix Rj
k evaluated at

zjk. Vector zk =
[(
z1k
)T
, ...,

(
zMk
)T]T

represents all landmark

measurements at time k, and measurements zjk are condition-
ally independent given xk and mj .

In addition, we assume that, at time k, we have a mo-
tion/odometry measurement yk ∈ Rny of the form

yk = hy (xk − xk−1) + ηk (2)

where hy (·) is a function and ηk are independent zero-mean
Gaussian noises with covariance matrix Θ. This measure-
ment model gives rise to the likelihood p (yk|xk, xk−1) =
N (yk;hy (xk − xk−1) ,Θ) and we assume it is independent
of the rest of the measurements given xk and xk−1.

We also assume that the agent moves with a transition
density p (xk | xk−1) and that at time 0 the agent state and
landmarks are independent with densities p (x0) and

p (m) =
M∏

j=1

p
(
mj
)

=
M∏

j=1

N
(
mj ;mj , P j

)
, (3)

respectively. Given the measurements up to the final time step
K, our objective is to compute the posterior PDF of the agent

trajectory x0:K =
[
(x0)

T
, ..., (xK)

T
]T

and landmarks. This
density is given by Bayes’ rule

p (x0:K ,m | z1:K , y1:K)

∝
K∏

k=1

[p (zk | xk,m) p (yk | xk, xk−1) p (xk | xk−1)]

× p (x0) p (m) (4)

where ∝ denotes proportionality, and all the densities on
the right-hand side of this equation are part of the problem
formulation.

Computing (4) is intractable for nonlinear/non-Gaussian
systems so we require approximations. In this paper, we pursue
approximations that make use of the factorisation

p (x0:K ,m | z1:K , y1:K) = p (x0:K | z1:K , y1:K)

× p (m | z1:K , x1:K) (5)

where the distribution of m is conditionally independent of
y1:K given x1:K . As in FastSLAM [16], [17], this factorisation
is of interest as the distribution of the map given the measure-
ments and agent trajectory is made of independent PDFs over
the landmarks

p (m|z1:K , x1:K) =

M∏

j=1

p
(
mj | zj1:K , x1:K

)
. (6)

This independence property is beneficial from a computational
point of view as it lowers the number of parameters of the
landmark distribution compared to a joint distribution of the
landmarks [1]. In addition, using Bayes’ rule for each factor
in (6) yields

p
(
mj | zj1:K , x1:K

)
∝ p

(
zj1:K | mj , x1:K

)
p
(
mj | x1:K

)

=
K∏

k=1

p
(
zjk | mj , xk

)
p
(
mj
)

(7)

where p
(
mj | x1:K

)
= p

(
mj
)

as the landmark positions and
agent trajectory are a priori independent, see (4). Therefore, the
posterior distribution for landmark j given the agent trajectory
can be obtained by considering the prior and updating it with
K likelihoods p

(
zjk|mj , xik

)
.

B. Considered solution

In this subsection, we explain the type of approximations
we consider to approximate (4). As in FastSLAM, we aim to
have a Monte Carlo approximation to p (x0:K | z1:K , y1:K) of
the form

p (x0:K | z1:K , y1:K) ≈
N∑

i=1

wi
Kδ
(
x0:K − xi0:K

)
(8)

where δ (·) is the Dirac delta, xi0:K is the ith trajectory particle
at time K, wi

K is its weight and N is the number of particles.
Then, using (7), for each trajectory xi0:K , the posterior PDF
of landmark j is

p
(
mj | zj1:K , xi1:K

)
∝

K∏

k=1

p
(
zjk | mj , xik

)
p
(
mj
)
, (9)

which can be calculated by updating p
(
mj
)
, which is given

in (3), using the measurement model (1) with known agent
trajectory xi0:K .

Due to the nonlinear measurement functions, each of the
updates in (9) does not have a closed-form expression. One
way to deal with nonlinearities in Gaussian updates is to
approximate the nonlinear functions as affine functions with
additive noise [20]. Then, we consider the approximation

hi,jk
(
mj
)
, h

(
xik,m

j
)
≈ Hi,j

k mj + bi,jk + ei,jk (10)

where Hi,j
k ∈ Rnz×nm , bi,jk ∈ Rnz×1 and ei,jk

is a zero-mean Gaussian noise with covariance matrix
Ωi,j

k ∈ Rnz×nz such that the likelihood p
(
zjk | mj , xik

)
≈

N
(
zjk;Hi,j

k mj + bi,jk , Rj
k + Ωi,j

k

)
. Then, under approxima-

tion (10), the posterior PDF of landmark j, see (9), is Gaussian
with mean mi,j

K and covariance matrix P i,j
K , which can be

obtained by performing K Kalman filter updates with an affine
measurement [20, Eq. (6)-(7)]. Therefore, we can obtain mi,j

K

and P i,j
K with the recursion

mi,j
k = mi,j

k−1 + Φi,j
k

(
Si,j
k

)−1 (
zjk −H

i,j
k mi,j

k−1 − b
i,j
k

)

(11)

P i,j
k = P i,j

k−1 − Φi,j
k

(
Si,j
k

)−1 (
Φi,j

k

)T
(12)

where k goes from 1 to K, mi,j
0 = mj and P i,j

0 = P j and

Si,j
k = Hi,j

k P i,j
k−1

(
Hi,j

k

)T
+ Ωi,j

k +Rj
k, (13)

Φi,j
k = P i,j

k−1

(
Hi,j

k

)T
. (14)

Finally, the joint posterior approximation becomes

p (x0:K ,m | z1:K , y1:K) ≈
N∑

i=1

wi
Kδ
(
x0:K − xi0:K

)

×
M∏

j=1

N
(
mj ;mi,j

K , P i,j
K

)
. (15)

It should be noted that, in this type of solution to the
SLAM problem, the accuracy of the approximation of the
posterior (15) only depends on how we obtain the Monte Carlo
approximation (8) and the parameters Hi,j

k , bi,jk and Ωi,j
k of the

approximations (10). In this work, we will provide a way of
selecting these parameters that outperforms the previous meth-
ods in the literature. Before doing so, we proceed to briefly
review statistical linear regression and how other approaches
in the literature obtain the approximations (8) and (10).

C. Background work

In the original FastSLAM algorithm [16], the Monte Carlo
samples (8) are obtained via sequential Monte Carlo sampling
using an importance density that samples from the transition
density p (xk | xk−1), performing smoothing while filtering
[26]. In addition, FastSLAM sets Ωi,j

k = 0 and the parameters
Hi,j

k and bi,jk are obtained while filtering using a first-order
Taylor series approximation of h

(
xik,m

j
)

at the current
landmark mean, as in the extended Kalman filter [14]. In
FastSLAM 2.0 [17], the importance density is changed so
that the current measurement is taken into account to draw
new samples but the parameters of the approximation (10) are
chosen in the same way as in FastSLAM.

In unscented FastSLAM [19], which will be explained
thoroughly in the next section, Hi,j

k , bi,jk and Ωi,j
k are obtained

through the unscented Kalman filter (UKF) [27]. In other
words, Hi,j

k , bi,jk and Ωi,j
k are selected using SLR, which will

be explained in Section III-A, with respect to the predicted
densities at each time step using the unscented transform.
This is equivalent to the choice of measurement linearisation
parameters of the UKF, see [20, Sec. II.A] for a full discussion
on how different nonlinear Kalman filters select the parameters
of the measurement linearisation at each update step. In
unscented FastSLAM, the current measurement is also taken
into account in the importance density to draw new particles.
Apart from the unscented transform, we can use other sigma-
point methods [28], [29].

However, there are two drawbacks of the above mentioned
FastSLAM methods:

• D1: Trajectory samples degenerate for long time se-
quences. For long enough trajectories, all trajectory sam-
ples will have a common ancestor in the past due to the
use of a particle filter to draw the samples.

• D2: The selection of the parameters Hi,j
k , bi,jk and Ωi,j

k

does not take into account knowledge of all measure-
ments. Therefore, all available information is not consid-
ered to choose the parameters that determine the quality
of the posterior approximation, given in (4).

In this work, we propose a batch solution to SLAM that
tackles D1 and D2. We address D1 by using particle smoothing
by backward simulation, whose benefits compared to forward
filtering become more significant for long sequences (high K).
We address D2 by using posterior linearisation techniques,
in which we use all available information to select the SLR
parameters Hi,j

k , bi,jk and Ωi,j
k [20], [25]. The improvement

of posterior linearisation techniques compared to non-iterated
Kalman filters, such as UKF, is expected to be higher for high
nonlinearities and low measurement noise. In this case, non-
iterated Kalman filters do not provide an accurate approxi-
mation of the posterior, as proved by the Kullback-Leibler
divergence in [30], but posterior linearisation can.

III. SIGMA-POINT FASTSLAM FILTERING ALGORITHM

In this section, we review two important concepts that are
useful for the rest of the paper, SLR in Section III-A and a
general sigma-point FastSLAM filtering algorithm, from an
SLR perspective, in Section III-B.

A. Statistical linear regression

In this section we review SLR, which plays an important
role in this paper.

Definition 1. Given a function h (·) and a PDF p (·) of a
random vector, whose first two moments are x and P , the
SLR of h (·) with respect to p (·) is given by [31]

H+ = ΨTP−1, b+ = z −H+x (16)

Ω+ = Φ−H+P
(
H+
)T

(17)

where

z =

∫
h (x) p (x) dx (18)

Ψ =

∫
(x− x) (h (x)− z)T p (x) dx (19)

Φ =

∫
(h (x)− z) (h (x)− z)T p (x) dx. (20)

The approximation h (x) ≈ H+x + b+ minimises the
mean square error (MSE) with respect to p (·) and Ω+ is the
MSE matrix [31]. In general, the moments (18)-(20) cannot
be computed in closed-form but they can be approximated
using sigma-point methods such as the unscented transform
[27]. We first select ns sigma-points X1, ...,Xns

and weights
ω1, ..., ωns , which match the moments x and P , according to
a suitable sigma-point method [14], [27]. Then, the SLR is
performed as indicated in Algorithm 1.

Algorithm 1 Statistical linear regression using sigma-points
Input: Function h (·) and first two moments x, P of a PDF p (·).
Output: SLR parameters

(
H+, b+,Ω+

)
.

- Select ns sigma-points X1, . . . ,Xns and weights ω1, . . . , ωns

according to x and P .
- Transform the sigma-points Zj = h (Xj) j = 1, . . . , ns.
- Approximate the moments (18)-(20) as

z ≈
ns∑

j=1

ωjZj , Ψ ≈
ns∑

j=1

ωj (Xj − x) (Zj − z)T

Φ ≈
ns∑

j=1

ωj (Zj − z) (Zj − z)T

- Obtain H+, b+,Ω+ from (16)-(17).

B. FastSLAM filtering algorithm

In this section, we describe a general sigma-point Fast-
SLAM filtering algorithm, because the first step of posterior
linearisation backward SLAM is to run this type of algorithm.

FastSLAM assumes that, at time k−1, we have a density of
the form (15), but with time index k−1 rather than K. The ob-
jective in FastSLAM is to approximate p (x0:k,m | z1:k, y1:k)
in the same form as in (15). We first need to obtain (weighted)
samples from the PDF

p (x0:k | z1:k, y1:k) ∝ p (zk | x0:k, z1:k−1) p (yk | xk, xk−1)

× p (xk | xk−1) p (x0:k−1 | z1:k−1, y1:k−1) .
(21)

The PDF (21) is sampled with an importance density qk (·),
which can depend on current and past measurements. In order
to apply sequential Monte Carlo sampling, the importance den-
sity factorises as qk (x0:k) = qk (xk | x0:k−1) qk−1 (x0:k−1).
Then, we can draw a sample from qk (·) by drawing a
sample from qk (xk | x0:k−1) and appending it to a previ-
ous sample from qk−1 (·). The ith sample is denoted as

xi0:k =
[(
xi0
)T
, ...,

(
xik
)T]T

where xik ∼ qk
(
xk | xi0:k−1

)
.

The corresponding particle weight is given by

wi
k ∝

p
(
zk | xi0:k, z1:k−1

)
p
(
yk | xik, xik−1

)

qk
(
xik | xi0:k−1

)

× p
(
xik | xik−1

)
wi

k−1. (22)

However, p
(
zk | xi0:k, z1:k−1

)
does not admit a closed-form

expression and is approximated as

p
(
zk | xi0:k, z1:k−1

)

=

∫
p
(
zk | xik,m

)
p
(
m | xi0:k−1, z1:k−1

)
dm

≈
M∏

j=1

∫
N
(
zjk;h

(
xik,m

j
)
, R
)
N
(
mj ;mi,j

k−1, P
i,j
k−1

)
dmj

(23)

where the Gaussian approximation is given in (15). This
integral can be solved by using the enabling approximation
(10), where typical selections of Hi,j

k , bi,jk , Ωi,j
k are ob-

tained by analytical linearisation (first-order Taylor series) of
h
(
xik,m

j
)

(EKF) [16], which sets Ωi,j
k = 0, or by SLR of

h
(
xik,m

j
)

w.r.t. N
(
·;mi,j

k−1, P
i,j
k−1

)
using sigma-points [19],

which usually deals better with nonlinearities than analytical
linearisations [30]. Under approximation (10), (23) has a
closed-form expression given by

p
(
zk | xi0:k, z1:k−1

)
≈

M∏

j=1

N
(
zjk;Hi,j

k mi,j
k−1 + bi,jk , Si,j

k

)

(24)

where Si,j
k is given by (13).

Under approximation (10), we can also compute the updated
distribution of each landmark and particle using the Kalman
filter update

p
(
mj | xi0:k, z1:k

)
∝ p

(
zjk | xik,mj

)
p
(
mj | xi0:k−1, z1:k−1

)

∝ N
(
mj ;mi,j

k , P i,j
k

)
(25)

where mi,j
k and P i,j

k are computed using (11) and (12). With
(24), we can compute the updated weights (22), which com-
plete the update step. Finally, the pseudocode of sigma-point
FastSLAM is given in Algorithm 2.

Algorithm 2 Pseudocode for sigma-point FastSLAM

- Draw N samples x10, ..., xN0 from p (x0) with wi
0 = 1

N
for all i.

- Set mi,j
0 = mi, P i,j

0 = P j for all i, j
for k = 1 to K do

for i = 1 to N do . We sample the current state
- Draw xik ∼ q

(
xik | xi0:k−1

)
.

for j = 1 to M do
- Select Hi,j

k , bi,jk ,Ωi,j
k : SLR of h

(
xik, ·

)
w.r.t.

N
(
·;mi,j

k−1, P
i,j
k−1

)
, see Alg. 1.

- Update the map for landmark j by calculating mi,j
k

and P i,j
k , as in (25).

end for
- Compute p

(
zk|xi0:k, z1:k−1

)
using (24).

- Compute wi
k using (22).

end for
- Normalise particle weights and resample if necessary by

calculating effective sampling size [14].
end for

IV. POSTERIOR LINEARISATION BACKWARD SLAM

In this section, we propose the posterior linearisation back-
ward SLAM (PLB-SLAM) algorithm to tackle drawbacks D1
and D2 of FastSLAM using a batch solution. The general idea
of PLB-SLAM is to first run a forward pass, which consists
of a sigma-point FastSLAM algorithm, explained in Section
III-B. Then, we obtain non-degenerate trajectory samples using
backward simulation, explained in Section IV-A. Finally, as in-
dicated in Section IV-B, we use iterated posterior linearisation
to obtain the approximation (10) for each trajectory sample.
The steps of PLB-SLAM are summarised in Algorithm 3.
Finally, a discussion on the applicability of PLB-SLAM is
provided in Section IV-C.

A. Backward simulation

Given the Rao-Backwellised Monte Carlo approxima-
tions to all the filtering distributions p (x0:k,m | z1:k, y1:k)

Algorithm 3 Steps of posterior linearisation backward SLAM
- Run a FastSLAM filtering algorithm: run Algorithm 2.
for i = 1 to Ñ do . Ñ is the number of backward samples

- Obtain a trajectory sample x̃i0:K of the mobile agent using
backward simulation: run Algorithm 4.

for j = 1 to M do
- Apply iterated posterior linearisation on the landmarks

and sample x̃i0:K : run Algorithm 5.
end for

end for

for k = 0, . . . ,K, which have the form (15), we
can obtain non-degenerate, evenly weighted samples from
p (x0:K | z1:K , y1:K) by performing backward simulation [21],
[22]. The backward simulation approximation is given by

p (x0:K | z1:K , y1:K) ≈ 1

Ñ

Ñ∑

i=1

δ
(
x0:K − x̃i0:K

)
(26)

where Ñ is the number of backward trajectories determined
by the user and x̃i0:K is the ith backward trajectory.

In the considered solution to SLAM, we perform an approx-
imate Rao-Blackwellisation for the landmark positions so we
need to take this into account in backward simulation [22]. In
the following, we provide two propositions that indicate how
backward simulation is performed in our problem.

Proposition 2. Given the filtering distribution
p (x0:k,m | z1:k, y1:k) at time k of the form (15) and a
sample x̃k+1:K from p (xk+1:K | z1:K , y1:K),

(
xi0:k, x̃k+1:K

)

is a sample from p (x0:K | z1:K , y1:K) if particle xi0:k is
chosen with probability

w̃i ∝ wi
kp
(
x̃k+1 | xik

)
p
(
yk+1 | x̃k+1, x

i
k

) M∏

j=1

ξi,jk (27)

ξi,jk =

∫
N
(
mi;mi,j

k , P i,j
k

) K∏

p=k+1

p
(
zjp | x̃p,mj

)
dmj .

(28)

Proposition 2 is proved in Appendix A. In the next proposi-
tion, we indicate how ξi,jk is approximated using the linearised
measurement model.

Proposition 3. Let x̃p for p ∈ {k + 1, ...,K} denote a particle
of the filtering recursion at time step p and let H̃j

p , b̃,jp and
Ω̃j

p denote the linearisation parameters obtained in filtering
for x̃p and landmark j such that we assume

p
(
zjp | x̃p,mj

)
= N

(
zjp; H̃j

pm
j + b̃jp, R

j
p + Ω̃j

p

)
. (29)

Then, factor ξi,jk in (28) is given by

ξi,jk ∝
∣∣∣∣I +

(
P i,j
k

)T/2

Lj
k

(
P i,j
k

)1/2∣∣∣∣
−1/2

exp
(
−κi,jk /2

)

(30)

κi,jk =
(
mi,j

k

)T
Lj
km

i,j
k − 2

(
mi,j

k

)T
ljk −

(
Lj
km

i,j
k − l

j
k

)T

×
(
P i,j
k

)1/2(
I +

(
P i,j
k

)T/2

Lj
k

(
P i,j
k

)1/2)−1

×
(
P i,j
k

)T/2 (
Lj
km

i,j
k − l

j
k

)
(31)

where
(
P i,j
k

)1/2
is the Cholesky factorisation of P i,j

k =
(
P i,j
k

)1/2 (
P i,j
k

)T/2

and ljk and Lj
k are calculated recursively

ljk = ljk+1 +
(
H̃j

k+1

)T (
Rj

k+1 + Ω̃j
k+1

)−1 (
zjk+1 − b̃

j
k+1

)

(32)

Lj
k = Lj

k+1 +
(
H̃j

k+1

)T (
Rj

k+1 + Ω̃j
k+1

)−1

H̃j
k+1 (33)

by initialising them to ljK = 0 and Lj
K = 0.

Proposition 3 is proved in Appendix B. Note that the two
propositions, once the system is linearised and without taking
into account the motion measurements, correspond to a partic-
ular case of more general Rao-Blackwellised linear smoothers
[22]. Nevertheless, we include the detailed derivations due to
the importance of the specific formulation in SLAM and to
explicitly consider the motion measurements. The resulting
backward trajectory simulator is summarised in Algorithm
4. It is important to notice, that once we have performed
filtering, we can sample backward trajectories in parallel by
running Algorithm 4 in different processing units. Obtaining
each trajectory sample using Algorithm 4 has complexity of
O (KN).

Algorithm 4 Backward trajectory simulation for SLAM
Input: Rao-Blackwellised particle filtering densities. Measurement
function linearisation parameters.
Output: Backward trajectory sample x̃0:K .

- Choose x̃K = xiK with probability wi
K .

- Set ljK = 0 and Lj
K = 0 for j = 1, ...,M ..

for k = K − 1 to 0 do
- Calculate ξi,jk using (30) for i = 1, ..., N and j = 1, ...,M .
- Calculate w̃i using (27) for i = 1, ..., N and normalise.
- Choose x̃ik = xik with probability w̃i.
- Compute ljk and Lj

k using (32) and (33) for j = 1, ...,M .
end for
- Return x̃0:K = (x̃0, ..., x̃K).

B. Posterior linearisation for the landmark distributions

Given the trajectory samples obtained by backward sim-
ulation, the next step is to obtain the posterior distributions
for the landmarks p

(
mj | x̃i0:K , z1:K , y1:K

)
. As the trajectory

samples in backward simulation are different from the ones
obtained while filtering, we must compute the distribution
of the landmarks for each new trajectory. Given the agent
trajectory, the posterior distribution of each landmark is in-
dependent of the rest of the landmarks, as indicated by (6), so
we can update each landmark independently. The posterior of
a landmark given a trajectory sample is given by (9), which
can be computed in closed-form under the approximation (10).

For each trajectory x̃i0:K , the quality of the posterior ap-
proximation only depends on Hi,j

k , bi,jk , and Ωi,j
k in (10).

The main insight of posterior linearisation is that we want
the approximation in (10) to be accurate in the area of
interest, where the posterior has its mass. More specifically,
given the measurements, the selected Hi,j

k and bi,jk are chosen

to minimise the mean square error w.r.t. the measurement
function hi,jk

(
mj
)

= h
(
x̃ik,m

j
)

(
Hi,j

k,+, b
i,j
k,+

)

= arg min
(Hi,j

k ,bi,jk)
E
[
(·)T

(
hi,jk

(
mj
)
−Hi,j

k mj − bi,jk
)]

(34)

and Ωi,j
k is the mean square error matrix of the resulting

approximation [20]:

Ωi,j
k,+ = E

[(
hi,jk

(
mj
)
−Hi,j

k,+m
j − bi,jk,+

)
(·)T

]
(35)

where the previous expectations are taken w.r.t. to the posterior
density p

(
mj | x̃i0:K , z1:K , y1:K

)
and (·)T a and a (·)T repre-

sent aTa and aaT , respectively. The solution to this problem
is given by selecting Hi,j

k , bi,jk and Ωi,j
k using SLR w.r.t.

p
(
mj | x̃i0:K , , z1:K , y1:K

)
[20, Sec. II].

The problem is that posterior linearisation is intractable, as
we require the posterior to approximate it. Nevertheless, we
can apply posterior linearisation in an iterated fashion, as in the
iterated posterior linearisation filter (IPLF) [20]. That is, since
we do not have the posterior, we perform SLR with respect to
the current approximation of the posterior. At the end of each
iteration, we expect to obtain an improved approximation of
the posterior which means that it can be used to obtain a better
SLR at the next iteration. The steps of the IPLF for updating a
landmark position are given in Algorithm 5, where iterations
only change the parameters in (10), not the prior.

Algorithm 5 has a computational complexity O (KJ) and
can be run in parallel for each trajectory sample and landmark.
In addition, the for loop over all time steps in Algorithm 5 can
be run in parallel, so it is quite suitable for parallel computing
architectures, as the backward simulator in Section IV-A.

Finally, we would like to mention that posterior linearisation
can also be applied while filtering in FastSLAM to select
Hi,j

k , bi,jk ,Ωi,j
k in (10), which is used to compute the particle

weights and update the landmark distribution, see (24) and
(25). In other words, we can use the IPLF rather than a (non-
iterated) sigma-point Kalman filter to select these parameters.
However, for the received signal strength indicator measure-
ments used in the experiments and simulations of the next
section, the IPLF used in FastSLAM forward filtering did not
improve performance, mainly due to possible multimodalities
in the conditional PDFs of beacon positions that appear while
filtering, but can be resolved in smoothing. Therefore, in the
rest of this paper, we only consider the IPLF for updating
the distribution of the landmarks for each backward trajectory
sample.

C. Discussion on applicability

PLB-SLAM has the limitation that it is computationally
heavy for online, real-time estimation due to the use of
FastSLAM and then the backward simulator. This limitation
is important in many applications, for instance, if the agent,
such as a robot, unmanned aerial vehicle, or a self-driving
vehicle, must estimate its position and the map in real time
to navigate through the environment. In these scenarios, it
is more convenient to use FastSLAM or other online SLAM

Algorithm 5 Iterated posterior linearisation filter for updating
the state of landmark j
Input: Trajectory sample x̃i0:K , prior mean mj and covariance matrix
P j , number of iterations J .
Output: Approximated mean mi,j

K and covariance P i,j
K of

p
(
mj | x̃i0:K , z1:K , y1:K

)
.

- Set u0 = mj , W 0 = P j .
for p = 1 to J do

for k = 1 to K do
- Calculate Hi,j

k , bi,jk ,Ωi,j
k using SLR of hi,j

k (·) w.r.t.
N
(
·;up−1,W p−1

)
, see Alg. 1.

end for
- Compute the updated moments up and W p using prior

moments mj , P j and the current linearisation parameters
Hi,j

1:K , b
i,j
1:K ,Ω

i,j
1:K using (11)-(12).

end for
- Return mi,j

K = uJ and P i,j
K = W J .

methods. Nevertheless, there are other SLAM applications in
which a real-time algorithm is not required and accuracy is
more important.

In particular, we highlight crowdsourced map estimation
[32]. Here, an agent enters an area, estimates its position and
maps the positions of the beacons/landmarks using SLAM.
Once the agent leaves the area, the estimated map is uploaded
to a database that can then be shared and updated by other
agents that perform SLAM as well. Here, there is no real-
time processing requirement when the agent uploads the map
to the database. Therefore, the agent can use FastSLAM while
moving in the area of interest and, then, when leaving the area,
the agent can perform PLB-SLAM to attain a higher accuracy
in map estimation. Another option is to run PLB-SLAM off-
line in the cloud.

We would also like to clarify that backward simulation
can be used to deal with SLAM based on occupancy grids
[33]. However, the Rao-Blackwellised backward simulator and
posterior linearisation use Gaussian distributions to represent
the map given the trajectory, so their use is not intended for
occupancy-grid SLAM.

V. SIMULATIONS

In this section, we compare PLB-SLAM with previous
sample-based SLAM solutions in a simulated scenario. In
particular, we are especially interested in the accuracy of the
estimated map, see Section IV-C. We have implemented the
following sample-based SLAM algorithms: unscented Fast-
SLAM and FastSLAM, which uses analytical linearisation
(AL), which denotes a first-order Taylor series linearisation,
instead of SLR, as in [16]. We have also implemented PLB-
SLAM using AL rather than SLR to show the benefits of SLR.
Moreover, we have implemented the iterated extended Kalman
smoother (IEKS) [34] on the joint state defined by the agent
and the map. The IEKS is a nonlinear least squares solver for
the maximum a posteriori estimator, such as the algorithms in
[35], [36].

A. Models

We consider that the state xk at time k is xk =
[pxk, v

x
k , p

y
k, v

y
k ,]

T where pk = [pxk, p
y
k]T is the position vector

-2 0 2 4 6 8 10 12 14 16 18 20

x axis (m)

-2

0

2

4

6

y
ax

is
 (

m
)

1

2

3

45

6 7 8

9

Figure 1: The agent initial and final positions are denoted as a blue circle
and a cross, respectively. The agent position and its heading every ten
time steps are marked as an arrow and a number, which indicates the
sequence of agent positions. The prior mean [9, 2]T of the 10 beacons
is shown as a black cross.

and [vxk , v
y
k]T is the velocity vector. The agent moves with the

nearly-constant velocity model

p (xk | xk−1) = N (xk;Fxk−1, Q) (36)

where

F = I2 ⊗
(

1 τ
0 1

)
, Q = qI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
(37)

with ⊗ being the Kronecker product, In the identity matrix
of size n, τ is the sampling period and q is a parameter
of the model. We consider the agent trajectory in Figure 1,
which contains 107 time steps with τ = 1 s. Density p (x0)
is Gaussian with a covariance matrix 0.01I4 and its mean is
drawn from a Gaussian PDF with mean the true initial state
and covariance matrix 0.01I4 at each Monte Carlo run.

Beacons are located at a constant height hb with respect
to the agent. Beacon j measures the received signal strength
indicator (RSSI) according to the exponential path loss model
[37]

h
(
xk,m

j
)

= P0 − 10γ log10

(√
‖pk −mj‖2 + h2b

)
(38)

where P0 is the received power (dBm) at a reference distance
of 1m, γ is the path loss exponent and mj is the position of the
jth beacon. It should be noted that the receiver knows what
RSSI measurement corresponds to each beacon, which is the
case for many radio signal-based sensors, for example, Blue-
tooth beacons, Wi-Fi, and mobile networks emitters. There
are 10 beacons and all beacons have the same prior PDF with
mean mj = [9, 2]

T
(m) and covariance P j = diag ([64, 4])(

m2
)
. We assume that the motion measurement in (2) consists

of differences in positions such that

hy (xk − xk−1) = Hy (xk − xk−1) (39)

where Hy =

(
1 0 0 0
0 0 1 0

)
. The rest of the model

parameters are: γ = 1.5, P0 = −70dBm, hb = 0.4m,
Rj

k = 100, Θ = 0.004I2m2 and q = 0.25m2/s3.

B. Algorithm implementation

In the forward FastSLAM filter, we need to determine the
selection of Hi,j

k , bi,jk ,Ωi,j
k , the importance density, and the

resampling procedure. As in unscented FastSLAM [19], we

select Hi,j
k , bi,jk ,Ωi,j

k by SLR of the measurement function
w.r.t. the prior approximated using the unscented transform.
In these implementations, we use the unscented transform
with a weight 1/3 for the sigma-point at the mean [27]. For
the backward trajectory samples, we refine the selection of
Hi,j

k , bi,jk ,Ωi,j
k by using the IPLF with the same unscented

transform, see Algorithm 5. We will show results considering
1, 5 and 10 iterations of the IPLF, where we should note that
the case with 1 iteration corresponds to the UKF.

For the importance density, we use the optimal importance
density [14] for the motion measurements, as it can be
computed in closed-form, and is given by

qk
(
xk | xi0:k−1

)
=
p
(
yk | xk, xik−1

)
p
(
xk | xik−1

)

ρi
(40)

= N (xk; x̄q, P q) , (41)

where

x̄q = Fxik−1 + ΨS−1
(
yk −Hy (F − I4)xik−1

)
, (42)

P q = Q−ΨS−1ΨT , Ψ = Q (Hy)
T
, (43)

S = HyQ (Hy)
T

+ Θ, (44)

ρi = N
(
yk;Hy (F − I4)xik−1, S

)
. (45)

Substituting (40) into (22), the resulting updated weight is

wi
k ∝ p

(
zk | xi0:k, z1:k−1

)
ρiw

i
k−1 (46)

where p
(
zk | xi0:k, z1:k−1

)
is computed using (23)-(24). For

the resampling procedure, we perform resampling if the ef-
fective sampling size [14] is smaller than N/3. As a result,
the forward filter of PLB-SLAM is a version of unscented
FastSLAM, which is the basis for PLB-SLAM. Also, the
forward filter of PLB-SLAM that uses AL instead of SLR
is a version of FastSLAM where the EKF is used.

C. Results

In this section, we analyse the effect of backward simulation
and the iterations of the IPLF on estimation performance. We
evaluate the algorithms using Monte Carlo simulation with
Nmc = 300 runs. In each run, we draw new measurements
and beacon positions from the prior. We use 300 particles both
in filtering and in backward simulation. In order to illustrate
the benefits of backward simulation, we show the trajectory
samples for forward filtering and backward simulation for an
exemplar Monte Carlo run in Figure 2. In forward filtering,
trajectories degenerate for past states so they do not represent
the underlying uncertainty in the trajectories properly. There-
fore, the beacon estimates, which depend on the trajectory
samples, can be improved by using backward simulation, as
trajectories do not degenerate for past states.

In the rest of the section, we analyse the errors in the
estimation of the map and the trajectory so we proceed to
explain how we compute them. Let mj,l and m̂j,l denote the
true and estimated position of the jth landmark in the lth

-2 0 2 4 6 8 10 12 14 16 18 20

x position (m)

-2

0

2

4

6

y
po

si
tio

n
(m

)

Figure 2: Three hundred trajectory samples from forward filtering (blue),
backward simulation (red), and real trajectory (green), see Figure 1 as
well. Trajectory samples obtained by filtering degenerate for the initial
time steps. Trajectory samples obtained by backward simulation do not
degenerate and represent the underlying uncertainty more accurately.

1 2 3 4 5 6 7 8 9 10

IPLF iterations

0

1

2

3

4

5

6

7

8

9

B
ea

co
n

R
M

S
 p

os
iti

on
 e

rr
or

 (
m

)
Initial
Forward (SLR)
Backward (SLR)
Forward (AL)
Backward (AL)
IEKS

Figure 3: RMS position error of the beacons: Initial (prior error), forward
FastSLAM filtering and posterior linearisation backward SLAM using
SLR and AL. Iterations of the IPLF on the backward trajectories can
substantially reduce the error, especially with SLR.

Monte Carlo run. The RMS error for the sensor position is
defined as

Em ,

√√√√ 1

MNmc

Nmc∑

l=1

M∑

j=1

(m̂j,l −mj,l)
T

(m̂j,l −mj,l),

(47)

where we have normalised by M so that the error is defined
per sensor. Let pk denote the true position of the agent at time
k and p̂jk its estimation at the lth Monte Carlo run. The RMS
position error for the trajectory is defined as

Ep ,

√√√√ 1

KNmc

Nmc∑

l=1

K∑

k=1

(
p̂lk − pk

)T (
p̂lk − pk

)
, (48)

where we have normalised by K so that the error is defined
with respect to one time step.

In Figure 3, we show the RMS position error of the beacons
for the algorithms against the number of IPLF iterations. As
expected, the IEKS and forward FastSLAM reduce the error
compared to the initial error, which is given by the prior
uncertainty. Nevertheless, backward simulation and the use
of the IPLF can significantly lower the error with respect
to the IEKS and forward FastSLAM solutions. Within the

first few iterations of the IPLF, the error is significantly
lowered so it becomes clear the importance of the use of
backward simulation and the IPLF for accurate beacon map
estimation. Also, the use of SLR instead of AL to linearise
the measurement model, which is expected to be beneficial as
indicated in Section IV-B, has a major effect on performance.

We proceed to analyse the effect of varying the number of
particles. We show the RMS error in trajectory and beacon
estimates for the IEKS and 100, 200, 300 and 900 particles,
both in filtering and backward simulation, in Table I. We first
recall that the error in the trajectory estimates is independent
of the IPLF iterations, as they are only performed to update the
beacon positions for each backward trajectory sample. For all
the particle numbers, backward simulation lowers the error of
the trajectory estimate. In this scenario, the difference between
forward and backward simulation for the trajectory estimates
in error is slight, though backward trajectories represent the
underlying uncertainty better, as can be seen in Figure 2. The
most important improvement for beacon location is obtained
by the application of the IPLF in the backward trajectories.
The RMS error in beacon positions is reduced up to a 50%
compared to the forward FastSLAM filter and this happens for
all the considered number of particles. In addition, the use of
SLR outperforms the use of AL in beacon position estimation,
as expected. IEKS performs better than particle based methods
to estimate the trajectory, but its error in map estimation, which
is relevant in SLAM applications, is remarkably higher than
the error of PLB-SLAM.

The running times of our Matlab implementations of the
algorithms in a computer with a 3.5 GHz Intel Xeon E5
processor are given in Table II. IEKS has a remarkably low
running time. However, as analysed before, its performance is
rather low compared to the PLB-SLAM methods in terms of
map estimation.

VI. EXPERIMENTAL RESULTS

In this section, the proposed method PLB-SLAM is evaluated
in two sets of experimental data. First, in Section VI-A, we
consider controlled experiments involving Bluetooth beacons
and a pedestrian with a smartphone as the mobile agent. These
experiments were designed so that we know the location of the
beacon positions (ground truth). This enables us to compute
the error in the estimation, as in the simulation results.

In the second set of experiments, which are explained in
Section VI-B, we consider experiments involving Wi-Fi access
points and a pedestrian with a smartphone in a transport hub in
Helsinki, Finland. The main objective of these experiments is
to show applications in real scenarios, for instance, an accurate
mapping of the Wi-Fi access points in a transport hub can be
used to aid indoor localisation and guide travelers. In this case,
there is no ground truth available so we cannot compute the
errors. Nevertheless, we rank the different algorithms based
on their resulting log-likelihoods on a test set. Better position
estimates are expected to explain the data of a test set better,
which results in a higher log-likelihood.

Figure 4: Scenario of the experiments. Ten beacons are placed on tables
in a canteen at Aalto University. To aid visualisation, beacons are marked
by a red circle.

A. Controlled Bluetooth beacons experiments

In this section, we first discuss the setup of the experiments
and then the results of the SLAM algorithms.

1) Setup: In order to evaluate the error in map estimation,
which is our main objective, we need to know the true posi-
tions of the beacons so we designed the following controlled
experiment. We placed 10 Bluetooth beacons (Kontakt.io smart
beacons) on tables in a canteen, as shown in Figure 4,
annotating their positions with the layout in Figure 5. The
mobile agent is a pedestrian carrying a smartphone (Huawei
Nexus 6) measuring the RSSI from the device’s Bluetooth
transceiver as well as the motion through the smartphone’s
inertial measurement unit (IMU; Bosch BMI160). The RSSI
measurements are assumed to follow the exponential path
loss model in (38). The measurement model parameters were
calibrated for each beacon beforehand, and providing values
quite similar to the ones in Section V-A. In our set-up, the
Bluetooth beacons transmit their IDs asynchronously every
350 ms, so the smartphone can determine what RSSI mea-
surements corresponds to each beacon and their timestamp.
For simplicity, we synchronise the measurements using linear
interpolation at every second.

The IMU measurements are used to provide the motion
measurements for the proposed SLAM algorithm. The motion
measurements are based on a pedestrian dead reckoning (PDR)
algorithm that detects steps and estimates heading [38]–[40].
We used a step-detection algorithm based on the zero-crossings
in the accelerometer signal [39], [41] and estimated the step
length lk using the Weinberg step length estimator [42]. The
heading θk is estimated by first rotating the gyroscope mea-
surements from the IMU coordinate frame into the person’s
coordinate frame, using the gravity reference vector from the
accelerometer, and subsequent integration, similar to [39]. This
procedure yields measurements of the change in position

yk = lk [cos(θk), sin(θk)]
T (49)

where the function hy (·) of the measurement model (2)
is given by (39). Finally, the PDR as well as the RSSI

Table I: RMS error (m) in trajectory and beacon positions against the number of particles for forward filtering (F) and backward simulation with J IPLF
iterations (BJ) using SLR and AL, and for the IEKS.

Trajectory Beacon
SLR AL SLR AL

F B F B F B1 B5 B10 F B1 B5 B10
N = 100 0.86 0.85 0.86 0.85 6.17 8.06 3.10 3.00 8.40 7.13 5.58 4.45
N = 200 0.81 0.79 0.84 0.83 6.21 8.07 3.11 2.96 8.32 7.14 5.57 4.41
N = 300 0.78 0.77 0.88 0.87 6.20 8.07 3.14 2.93 8.30 7.14 5.55 4.36
N = 900 0.75 0.74 0.84 0.84 6.10 8.03 3.07 2.92 8.26 7.15 5.53 4.34

IEKS 0.62 6.58

3 m

Beacon 6

2.4 m

Beacon 7 Beacon 8 Beacon 9 Beacon 10

Beacon 5Beacon 4Beacon 3Beacon 2Beacon 1

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

3 m 3 m 3 m1.5 m

5.7 m 5.4 m 4.8 m

0.9 m

2.1 m

2.1 m

Figure 5: Illustration of the experimental layout with the Bluetooth beacons’ arrangement (blue circles) and the anchor points (red crosses)

Table II: Running times in seconds of the algorithms in forward filtering
(F) and backward simulation with J IPLF iterations (BJ)

SLR AL
N F B1 B5 B10 F B1 B5 B10
100 3.2 8.9 13.9 20.2 1.3 6.2 7.1 8.3
200 6.4 22.1 32.3 45.1 2.7 16.8 18.6 21.1
300 9.6 40.6 56.0 75.1 4.0 32.7 35.6 39.3
900 29.4 293.6 332.9 387.0 12.2 260.1 269.3 279.6

IEKS 0.22

Table III: Trajectories in experiments

No. Sequence of anchor points
1 B1–B2–C2–C4–B4–B3–A3–A1–C1–C4–A4–A1
2 C1–C4–B4–B1–A1–A4
3 C1–C2–A2–A3–C3–C4–A4–A3–C3–C2–A2–A1
4 B1–B2–C2–C4–B4–B2–A2–A1
5 C1–C4–B4–B1–A1–A4–B4–B1

data was linearly interpolated to obtain uniformly sampled
measurements with a sampling time of 1 s.

Based on the setup in Figure 5, five different experiments
were made. In each experiment, the anchor points shown in
Figure 5 were used such that the walking path consisted of
straight segments between two of these points. Reference tra-
jectories were then calculated for each experiment by extract-
ing the timestamps when the anchor points were passed and
linking them with straight movements with constant velocity.
The different trajectories are listed in Table III. An important
benefit of having these accurate reference trajectories is that,
apart from the PDR based on the smartphone IMU, we can also
obtain a PDR based on reference trajectories and evaluate the
algorithms independently of the step-detection system, which
is not the topic of this paper. The PDR measurement yk
based on anchor points is obtained by using (39) with the
corresponding reference trajectory.

2) Results: In the experiments, we use the same dynamic
and measurement models and filter parameters for PLB-SLAM
as in Section V, which consider 300 particles in filtering and
smoothing. We first analyse Experiment 1, whose trajectory

-2 0 2 4 6 8 10 12 14 16 18 20

x position (m)

-2

0

2

4

6

y
po

si
tio

n
(m

)

-2 0 2 4 6 8 10 12 14 16 18 20

x position (m)

-2

0

2

4

6

y
po

si
tio

n
(m

)

Real
Prior mean
Estimate filtering
Estimate PLB-SLAM

Figure 6: Estimates for beacon positions in Experiment 1 (top) using
PDR based on the anchor positions (bottom) using smartphone PDR. The
prior mean for all beacons is the same. Overall, both forward FastSLAM
filtering and PLB-SLAM improve the beacon locations, and PLB-SLAM
is more accurate in RMS sense, see Table IV.

can be found in Table III. This trajectory, reconstructed using
the anchor points and the simulated motion measurements
explained in the previous subsection, is in fact the trajectory
in Figure 1, which was used in the simulations in Section V.

We show the estimated beacon positions for forward Fast-
SLAM filtering and PLB-SLAM (with SLR) with 5 iterations
in the IPLF in Figure 6. For both types of motion measure-
ments, FastSLAM and PLB-SLAM satisfactorily improve the
locations of all the beacons, except for beacon 8, see Figure
5. Nevertheless, PLB-SLAM is able to provide more accurate
results in RMS sense, as will be analysed in the following.
For example, it provides remarkably more accurate estimates
than FastSLAM for beacons 5, 6 and 7 with the anchor point
PDR.

Table IV: Averaged RMS error (m) for beacon positions for forward filtering and backward simulation with 1 and 5 IPLF iterations

Anchor point PDR Smartphone PDR
SLR AL IEKS SLR AL IEKS

Experiment F B1 B5 F B1 B5 F B1 B5 F B1 B5
1 1.60 8.41 1.22 1.96 2.34 1.09 1.14 1.42 7.23 1.36 1.85 2.37 1.26 0.80
2 1.45 8.04 0.69 1.16 3.17 0.83 0.91 1.41 7.71 1.11 2.45 2.70 2.09 1.78
3 1.97 7.07 1.29 3.96 3.71 3.12 2.07 2.08 4.98 1.88 5.07 3.42 3.21 6.01
4 1.62 6.42 0.99 2.25 3.45 1.60 1.22 1.29 6.44 0.88 2.83 3.13 1.05 1.91
5 1.96 10.17 1.05 0.86 3.78 1.01 0.91 2.17 10.80 1.28 1.26 2.86 1.07 1.08

We also show the averaged RMS error for estimated beacon
positions by the algorithms, considering 5 iterations of the
IPLF, in the experiments in in Table IV. Considering all
experiments, we can see that the application of several itera-
tions of the IPLF, using SLR, in combination with backward
simulation usually provide the lowest errors. Importantly, just
running backward simulation and applying the UKF (one IPLF
iteration) increases the error with respect to the FastSLAM
filtering solution. This highlights the importance of performing
iterations in the IPLF in highly nonlinear settings. In general,
the PDR based on anchor points provides lower errors than
the PDR based on the smartphone IMU, as trajectory recon-
struction is more accurate using anchor points. In addition, the
improvement of PLB-SLAM with respect to forward filtering
(FastSLAM) is higher with the anchor point PDR and can be
quite significant. The highest improvement in RMS error with
respect to forward filtering using SLR is 91 cm for Experiment
5 and anchor point PDF. In addition, with SLR, there is over
a 50 cm reduction in averaged RMS error for the beacon
positions in Experiment 2 (anchor point PDR), Experiment
3 (anchor point PDR), Experiment 4 (anchor point PDR), and
Experiment 5 (both PDRs). For smartphone PDR and SLR,
there is a reduction in the RMS error of PLB-SLAM with
respect to FastSLAM higher than 20 cm for all experiments,
except for Experiment 1. Though this difference is smaller
than with anchor point PDR, it is still substantial. The IEKS
performs very well in some scenarios, such as Experiment 1
and 5, but it performs considerably worse than PLB-SLAM in
Experiment 2, 3 and 4. On average, PLB-SLAM is the best
performing algorithm.

B. Experiments with Wi-Fi access points

In these experiments, we perform SLAM to map the lo-
cations of Wi-Fi access points on one floor in a transport
hub in Helsinki, Finland. The data have been collected by
the company IndoorAtlas. In this data, a pedestrian with an
LG Nexus 5X smartphone measures RSSI from Wi-Fi access
points. The data also contains accurate trajectory information
obtained by a proprietary IndoorAtlas algorithm based on PDR
and map matching. As in the previous experiments, we use this
trajectory information to create the odometry measurements,
as odometry is not the topic of this paper.

We consider four experiments, for which the agent trajecto-
ries are shown in Figure 7. The lengths of the four trajectories
are approximately 120 m, 150 m, 175 m and 140 m. Among
all the detected Wi-Fi access points, we use a maximum
likelihood criterion to choose the access points that are in the
horizontal plane of the trajectories, which are 16. Then, we

-40 -30 -20 -10 0 10 20 30 40

x axis (m)

-15

-10

-5

0

5

10

15

y
ax

is
 (

m
)

Figure 7: Four considered trajectories: Experiment 1 (blue), Experiment
2 (red), Experiment 3 (green) and Experiment 4 (black). Initial agent
position is marked by a cross and every 10 time steps by circles.

use the first experiment to calibrate the measurement model
parameters of these Wi-Fi access points by maximising the
likelihood on the sensor positions and parameters P0 and γ,
and assuming that the agent trajectory is perfectly known.

In the SLAM algorithms, we consider the calibrated values
of P0 and γ for each sensor. Also, all sensors have the same
prior PDF with mean mj = [0, 0]

T
(m) and covariance matrix

P j = diag
([

502, 202
]) (

m2
)
. The rest of the parameters of

the filters are as in the previous experiments and we consider
300 particles in forward filtering and backward simulation. The
previous SLAM algorithms are run on the four experiments
and we estimate the location of the Wi-Fi access points.

As we do not know the true locations of the Wi-Fi access
points, we cannot compute the error with respect to the
ground truth, as in the previous examples. Instead, we compute
the log-likelihood of the resulting estimates for the fourth
experiment, assuming that the agent trajectory is perfectly
known and using the measurement model (38). The more
accurate the positions of the Wi-Fi access points are estimated,
the log-likelihood is expected to be higher as the estimated
sensor positions explain the data better.

The resulting log-likelihoods for the estimated positions in
each experiment are shown in Table V. The best performing
algorithm is PLB-SLAM with SLR and the application of IPLF
iterations. The worst performing algorithm in this data set is
the IEKS.

Therefore, we can conclude that, on the whole, PLB-SLAM
has important benefits compared to other SLAM algorithms in
batch problems, as demonstrated by simulated data and two
sets of experimental data with different sensors.

VII. CONCLUSIONS

In this paper, we have proposed the posterior linearisa-
tion backward SLAM algorithm as a batch solution to the

Table V: Log-likelihood (divided by a factor 103) of the estimated sensor
positions for each experiment (Exp.)

SLR AL IEKS
Exp. F B1 B5 F B1 B5

1 -1.623 -2.148 -1.592 -1.631 -1.872 -1.645 -1.704
2 -1.620 -2.116 -1.617 -1.653 -1.868 -1.648 -1.762
3 -1.632 -2.189 -1.618 -1.619 -1.869 -1.676 -1.766
4 -1.615 -2.210 -1.615 -1.660 -1.879 -1.655 -1.717

SLAM problem. PLB-SLAM is based on approximate Rao-
Blackwellised particle smoothing and the posterior linearisa-
tion technique to obtain accurate approximation of the PDFs
of the agent trajectory and the landmark map. The higher
performance of PLB-SLAM compared to FastSLAM comes
from two aspects: 1) PLB-SLAM uses backward simulation to
obtain non-degenerate trajectory samples and 2) PLB-SLAM
makes use of the iterated posterior linearisation filter rather
than a sigma-point Kalman filter to obtain the conditional
PDFs of the beacon position given the trajectory samples.

We have shown the benefits of PLB-SLAM in relation to
FastSLAM and the IEKS for batch SLAM problems using
simulations and experiments with smarthphones, Bluetooth
beacons, and Wi-Fi access points.

APPENDIX A

In this appendix, we prove Proposition 2. We have that

p (x0:k | xk+1:K , z1:K , y1:K)

=
p (x0:k, xk+1:K , zk+1:K , yk+1:K | z1:k, y1:k)

p (xk+1:K , zk+1:K , yk+1:K | z1:k, y1:k)

=
p (xk+1:K , zk+1:K , yk+1:K | z1:k, y1:k, x0:k)

p (xk+1:K , zk+1:K , yk+1:K | z1:k, y1:k)

× p (x0:k | z1:k, y1:k) . (50)

Then,

p (xk+1:K , zk+1:K , yk+1:K | z1:k, y1:k, x0:k)

=

∫
p (xk+1:K , zk+1:K , yk+1:K ,m | z1:k, y1:k, x0:k) dm

=

∫
p (m | z1:k, y1:k, x0:k)

×
K∏

p=k+1

[p (xp | xp−1) p (yp | xp, xp−1) p (zp | xp,m)] dm.

(51)

Removing all the terms that are constants given
xk+1:K , z1:K , y1:K , the backward kernel is

p (x0:k | xk+1:K , z1:K , y1:K)

∝ p (x0:k | z1:k, y1:k) p (xk+1 | xk) p (yk+1 | xk+1, xk)

×
∫
p (m | z1:k, y1:k, x0:k)

K∏

p=k+1

p (zp | xp,m) dm

= p (x0:k | z1:k, y1:k) p (xk+1 | xk) p (yk+1 | xk+1, xk)

×
M∏

j=1

∫
p
(
mj | z1:k, y1:k, x0:k

) K∏

p=k+1

p
(
zjp | xp,mj

)
dmj .

(52)

Using the Rao-Blackwellised particle filtering approxima-
tion, see (15), and considering we have drawn a sample
x̃k+1:K , see Proposition 2, we have

p (x0:k | x̃k+1:K , z1:K , y1:K)

∝
N∑

i=1

wi
kδ
(
x0:k − xi0:k

)
p
(
x̃k+1 | xik

)
p
(
yk+1 | x̃k+1, x

i
k

)

×
M∏

j=1

∫
N
(
mj ;mi,j

k , P i,j
k

) K∏

p=k+1

p
(
zjp | x̃p,mj

)
dmj ,

(53)

which proves Proposition 2.

APPENDIX B

In this appendix, we prove Proposition 3. Given the lin-
earised measurement model (29), using the information filter
update equation [43, Sec. 6.3], we have that

K∏

p=k+1

p
(
zjp | x̃p,mj

)
∝ N

(
mj ;

(
Lj
k

)−1

ljk,
(
Lj
k

)−1
)

(54)

where ljk and Lj
k are given as in Proposition 3. In the rest of

this appendix, we drop superindex j on ljk and Lj
k for clarity.

Substituting the previous equation into (28), we find

ξi,jk = N
(
L−1
k lk;mi,j

k , P i,j
k + L−1

k

)
. (55)

We can derive an alternative expresion that avoids inverting
Lk making use of the following two identities. We first have
that, by the matrix determinant lemma,
∣∣∣P i,j

k + L−1
k

∣∣∣ =

∣∣∣∣I +
(
P i,j
k

)T/2

Lk

(
P i,j
k

)1/2∣∣∣∣
∣∣L−1

k

∣∣ . (56)

On the other hand, by the matrix inversion lemma, we have
(
P i,j
k + L−1

k

)−1

= Lk − LkP
i,j
k

×
(
I +

(
P i,j
k

)T/2

Lk

(
P i,j
k

)1/2)−1 (
P i,j
k

)T/2

Lk. (57)

Then, plugging (56) and (57) into (55) and removing the
factors that do not depend on i, we obtain (30).

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part I,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp.
99–110, June 2006.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[3] H. Zhou, D. Zou, L. Pei, R. Ying, P. Liu, and W. Yu, “StructSLAM:
Visual SLAM with building structure lines,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 4, pp. 1364–1375, April 2015.

[4] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, Sep.
2017.

[5] H. Qin, Z. Meng, W. Meng, X. Chen, H. Sun, F. Lin, and M. H. Ang,
“Autonomous exploration and mapping system using heterogeneous
UAVs and UGVs in GPS-denied environments,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1339–1350, Feb. 2019.

[6] V. Savic, H. Wymeersch, and E. G. Larsson, “Target tracking in confined
environments with uncertain sensor positions,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 2, pp. 870–882, Feb. 2016.

[7] A. F. García-Fernández, M. R. Morelande, and J. Grajal, “Multitarget
simultaneous localization and mapping of a sensor network,” IEEE
Transactions on Signal Processing, vol. 59, no. 10, pp. 4544–4558, Oct.
2011.

[8] P. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, “SignalSLAM:
Simultaneous localization and mapping with mixed WiFi, Bluetooth,
LTE and magnetic signals,” in International Conference on Indoor
Positioning and Indoor Navigation, Oct. 2013, pp. 1–10.

[9] W. W. Kao and B. Q. Huy, “Indoor navigation with smartphone-based
visual SLAM and Bluetooth-connected wheel-robot,” in 2013 CACS
International Automatic Control Conference, Dec. 2013, pp. 395–400.

[10] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, “Mapping
and localization with RFID technology,” in IEEE International Confer-
ence on Robotics and Automation, vol. 1, April 2004, pp. 1015–1020.

[11] J.-F. Chen and C.-C. Wang, “Long-term RFID SLAM using short-range
sparse tags,” International Journal of Automation and Smart Technology,
vol. 5, no. 1, pp. 61–75, 2015.

[12] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,” in Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 2007, pp. 2480–2485.

[13] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Ag-
garwal, “Efficient, generalized indoor WiFi GraphSLAM,” in IEEE
International Conference on Robotics and Automation, May 2011, pp.
1038–1043.

[14] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[15] R. Martínez-Cantín and J. A. Castellanos, “Unscented SLAM for large-
scale outdoor environments,” in 2005 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Aug. 2005, pp. 3427–3432.

[16] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proceedings of the AAAI National Conference on Artificial
Intelligence, 2002, pp. 593–598.

[17] ——, “FastSLAM 2.0: An improved particle filtering algorithm for
simultaneous localization and mapping that provably converges,” in
Proceedings of the International Conference on Artificial Intelligence
(IJCAI), 2003, pp. 1151–1156.

[18] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
Feb. 2002.

[19] C. Kim, R. Sakthivel, and W. K. Chung, “Unscented FastSLAM: A
robust and efficient solution to the SLAM problem,” IEEE Transactions
on Robotics, vol. 24, no. 4, pp. 808–820, Aug. 2008.

[20] A. F. García-Fernández, L. Svensson, M. R. Morelande, and S. Särkkä,
“Posterior linearization filter: principles and implementation using sigma
points,” IEEE Transactions on Signal Processing, vol. 63, no. 20, pp.
5561–5573, Oct. 2015.

[21] F. Lindsten and T. Schön, “Backward simulation methods for Monte
Carlo statistical inference,” Foundations and Trends in Machine Learn-
ing, vol. 6, no. 1, pp. 1–143, 2013.

[22] F. Lindsten, P. Bunch, S. Särkkä, T. B. Schön, and S. J. Godsill,
“Rao-Blackwellized particle smoothers for conditionally linear Gaussian
models,” IEEE Journal of Selected Topics in Signal Processing, vol. 10,
no. 2, pp. 353–365, March 2016.

[23] S. Särkkä, P. Bunch, and S. Godsill, “A backward-simulation based
Rao-Blackwellized particle smoother for conditionally linear Gaussian
models,” in 16th IFAC Symposium on System Identification, 2012, pp.
506–511.

[24] K. Berntorp and J. Nordh, “Rao-Blackwellized particle smoothing for
occupancy-grid based SLAM using low-cost sensors,” in Proceedings of
the 19th IFAC World congress, 2014.

[25] A. F. García-Fernández, L. Svensson, and S. Särkkä, “Iterated poste-
rior linearization smoother,” IEEE Transactions on Automatic Control,
vol. 62, pp. 2056–2063, April 2017.

[26] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian non-
linear state space models,” Journal of Computational and Graphical
Statistics, vol. 5, no. 1, pp. 1–25, Mar. 1996.

[27] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar.
2004.

[28] Y. Song, Q. Li, Y. Kang, and Y. Song, “CFastSLAM: a new Jacobian
free solution to SLAM problem,” in IEEE International Conference on
Robotics and Automation, 2012.

[29] R. Havangi, H. D. Taghirad, M. A. Nekoui, and M. Teshnehlab, “A
square root unscented FastSLAM with improved proposal distribution
and resampling,” IEEE Transactions on Industrial Electronics, vol. 61,
no. 5, pp. 2334–2345, May 2014.

[30] M. R. Morelande and A. F. García-Fernández, “Analysis of Kalman
filter approximations for nonlinear measurements,” IEEE Transactions
on Signal Processing, vol. 61, no. 22, pp. 5477–5484, Nov. 2013.

[31] I. Arasaratnam, S. Haykin, and R. Elliott, “Discrete-time nonlinear
filtering algorithms using Gauss-Hermite quadrature,” Proceedings of
the IEEE, vol. 95, no. 5, pp. 953–977, May 2007.

[32] A. Rai, K. Chintalapudi, V. Padmanabhan, and R. Sen, “Zee: Zero-effort
crowdsourcing for indoor localization,” in Mobicom, August 2012.

[33] J. Jessup, S. N. Givigi, and A. Beaulieu, “Robust and efficient multi-
robot 3-D mapping merging with Octree-based occupancy grids,” IEEE
Systems Journal, vol. 11, no. 3, pp. 1723–1732, Sep. 2017.

[34] B. M. Bell, “The iterated Kalman smoother as a Gauss-Newton method,”
SIAM Journal on Optimization, vol. 4, no. 3, pp. 626–636, Aug. 1994.

[35] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE Interna-
tional Conference on Robotics and Automation, May 2011, pp. 3607–
3613.

[36] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” The International
Journal of Robotics Research, vol. 25, pp. 1181–1203, December 2006.

[37] D. Dardari, P. Closas, and P. M. Djuric, “Indoor tracking: Theory, meth-
ods, and technologies,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 4, pp. 1263–1278, April 2015.

[38] R. Harle, “A survey of indoor inertial positioning systems for pedes-
trians,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp.
1281–1293, 2013.

[39] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Robust pedestrian
dead reckoning (R-PDR) for arbitrary mobile device placement,” in
International Conference on Indoor Positioning and Indoor Navigation,
Oct. 2014, pp. 187–196.

[40] R. Hostettler and S. Särkkä, “IMU and magnetometer modeling for
smartphone-based PDR,” in International Conference on Indoor Posi-
tioning and Indoor Navigation, Oct 2016, pp. 1–8.

[41] S. Beauregard and H. Haas, “Pedestrian dead reckoning: A basis for
personal positioning,” in 3rd Workshop on Positioning, Navigation and
Communication, 2006, pp. 27–35.

[42] H. Weinberg, “Using the ADXL202 in pedometer and personal naviga-
tion applications,” Analog Devices, Tech. Rep., 2002.

[43] B. O. Anderson and J. B. Moore, Optimal Filtering. Prentice-Hall,
1979.

Ángel F. García-Fernández received the telecom-
munication engineering degree (with honours) and
the Ph.D. degree from Universidad Politécnica de
Madrid, Madrid, Spain, in 2007 and 2011, respec-
tively.
He is currently a Lecturer in the Department of Elec-
trical Engineering and Electronics at the University
of Liverpool, Liverpool, UK. He is also an external
research associate in the ARIES Research Center,
Universidad Antonio de Nebrija, Madrid, Spain. He
previously held postdoctoral positions at Universidad

Politécnica de Madrid, Chalmers University of Technology, Gothenburg,
Sweden, Curtin University, Perth, Australia, and Aalto University, Espoo,
Finland. His main research activities and interests are in the area of Bayesian
estimation, with emphasis on dynamic systems. He was recipient of the best
paper award at the International Conference on Information Fusion in 2017.

Roland Hostettler (S’10-M’14) received the Dipl.
Ing. degree in Electrical and Communication Engi-
neering from Bern University of Applied Sciences,
Switzerland in 2007, and the M.Sc. degree in Electri-
cal Engineering and Ph.D. degree in Automatic Con-
trol from Luleå University of Technology, Sweden
in 2009 and 2014, respectively. He has held Post-
Doctoral Researcher positions at Luleå University of
Technology, Sweden and Aalto University, Finland.
Currently, he is a Research Fellow with the De-
partment of Electrical Engineering and Automation,

Aalto University, Finland. His research interests include statistical signal
processing with applications to target tracking, biomedical engineering, and
sensor networks.

Simo Särkkä received his Master of Science (Tech.)
degree (with distinction) in engineering physics and
mathematics, and Doctor of Science (Tech.) degree
(with distinction) in electrical and communications
engineering from Helsinki University of Technology,
Espoo, Finland, in 2000 and 2006, respectively.
From 2000 to 2010 he worked with Nokia Ltd.,
Indagon Ltd., and Nalco Company in various indus-
trial research projects related to telecommunications,
positioning systems, and industrial process control.
From 2010 to 2013 he worked as a Senior Re-

searcher with the Department of Biomedical Engineering and Computational
Science (BECS) at Aalto University, Finland. Currently, Dr. Särkkä is an
Associate Professor and Academy Research Fellow with Aalto University,
Technical Advisor of IndoorAtlas Ltd., and an Adjunct Professor with Tam-
pere University of Technology and Lappeenranta University of Technology. In
2013 he was a Visiting Professor with the Department of Statistics of Oxford
University and in 2011 he was a Visiting Scholar with the Department of
Engineering at the University of Cambridge, UK. His research interests are
in multi-sensor data processing systems with applications in location sensing,
health and medical technology, machine learning, inverse problems, and brain
imaging. He has authored or coauthored 100 peer-reviewed scientific articles
and his book "Bayesian Filtering and Smoothing" along with its Chinese
translation were recently published via the Cambridge University Press. He is
a Senior Member of IEEE and serving as an Associate Editor of IEEE Signal
Processing Letters.

