
1

Importance Densities for Particle Filtering
using Iterated Conditional Expectations

Supplementary Material

This Supplementary Material provides additional simulation
details and results. Note that in both examples, the integrals
over the conditional expectations have closed form solutions
and thus, the one-step OID approximation (L = 1) coincides
with the method in [12]. References are as in the article.

I. UNIVARIATE NONLINEAR GROWTH MODEL

The univariate nonlinear growth model [9], [35] is given by

xn =
xn−1
2

+
25xn−1
1 + x2n−1

+ 8 cos(1.2n) + qn,

yn = 0.05x2n + rn,

with x0 ∼ N (0, 5) and qn ∼ N (0, 10), which is the standard
parametrization used in the literature. However, we assume
rn ∼ N (0, 1× 10−2), which corresponds to two magnitudes
lower measurement noise variance than commonly considered.

In addition to the results in the article, Fig. S.1 shows the
optimal importance density (OID) approximation for particle
j = 1 and time step n = 1. Here, the bootstrap proposal as
well as the slightly adapted one-step OID approximation are
both far from the true OID whereas the approximation based on
the proposed method converges to the larger OID mode. This
is because of the iterations being initialized by the bootstrap
proposal, which is closer to the larger OID mode in this case.
Furthermore, since a Gaussian density is used to approximate
the OID, the smaller mode can not be accounted for.

Fig. S.2 (left) shows the mean effective sample size (ESS)
together with the Monte Carlo standard deviation as a function
of the number of particles J . Here, the ESS is highest for the
proposed method, followed by the particle flow particle filter
(PFPF), Gaussian flow OID approximation (GFPF), the one-step
OID approximation, and the bootstrap filter (BPF). The one-
step OID approximation only performs slightly better compared
to the BPF, which is due to the highly concentrated likelihood,
which illustrates the benefit of the iterative re-linearization. The
GFPF performs better than both the BPF and the one-step OID
approximation, but not as good as the proposed method and the
PFPF. When comparing the computational time (Fig. S.2, right),
it can be seen that the BPF achieves the lowest computational
time per particle, mainly due to the possibility of exploiting
the model structure. The proposed method is slower than the
BPF but faster than the flow-based filters.

II. MULTIVARIATE RICKER POPULATION MODEL

For the multivariate Ricker population model, the dynamic
model of the logarithm of a species’ ith population out of a
total of I interacting populations is given by [36]

zi,n = (1− α)zi,n−1 + α
∑

j∈I\{i}

exj,n−1
e−cijdij∑

k∈I\{j} e
−cjkdjk

,

xi,n = log(zi,n) + β

(
1− zi,n

Ci

)
+ ui,n + vnqn,
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Fig. S.1. Illustration of the OID ( ), the bootstrap proposal ( ), the
one-step Gaussian OID approximation ( ), and the OID approximation
using the proposed method ( ) for particle j = 1 at n = 1.
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Fig. S.2. ESS (left) and computational time (right) as a function of the number
of particles J for the BPF ( ), one-step Gaussian OID approximation
( ), GFPF ( ), the PFPF ( ), and the proposed method ( ).

where xi,n is the logarithm of the ith population at time n,
zi,n is the deterministic change in population due to migration,
deaths, and births, and I = {1, . . . , I}. Furthermore α = 0.1 is
the migration coefficient, cij = 1 the spatial reach of migration,
dij the Euclidean distance between populations, β = 1 the
growth rate of the population, Ci = 20 the carrying capacity for
the corresponding population. The stochastic effects enter the
model through ui,n and qn. In particular, ui,n ∼ N (0, 1) is the
stochastic variation of the ith population, which is independent
of all other populations, and qn ∼ N (0, 0.32) the stochastic
variation affecting the whole species simultaneously. The latter
only occurs sporadically and enters the model through vn ∼
B(0.05) where B(ρ) denotes the Bernoulli probability mass
function with parameter ρ.

As a likelihood, we use a generalized Poisson model [37],
[38] with the population as its mean, that is,

yi,n ∼ GP(0.5 exp(xi,n), 0.5).

Here,

GP(x; θ, λ) = θ(θ + λx)x−1e−θ−λx

x!

is the generalized Poisson distribution [37] which is left-skewed
and has a heavier right tail compared to the ordinary Poisson
distribution and has mean E{x} = θ(1 − λ)−1 and variance
var{x} = θ(1− λ)−3. Furthermore, for each population and
time step, a measurement is only obtained with probability 0.5.


