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Importance Densities for Particle Filtering using
Iterated Conditional Expectations

Roland Hostettler, Member, IEEE, Filip Tronarp, Ángel F. Garcı́a-Fernández, and
Simo Särkkä, Senior Member, IEEE

Abstract—In this letter, we consider Gaussian approximations
of the optimal importance density in sequential importance
sampling for nonlinear, non-Gaussian state-space models. The
proposed method is based on generalized statistical linear regres-
sion and posterior linearization using conditional expectations.
Simulation results show that the method outperforms the com-
pared methods in terms of the effective sample size and provides
a better local approximation of the optimal importance density.

Index Terms—State estimation, particle filters, Monte Carlo
methods, nonlinear systems, posterior linearization

I. INTRODUCTION

Sequential Monte Carlo (SMC) methods are well-established
sequential Bayesian inference methods. For example, particle
filtering, which is an SMC method, is regularly employed
for estimation in nonlinear, non-Gaussian dynamic systems
in diverse applications [1]–[4]. In these methods, the state
posterior density is approximated using a set of random samples
(particles). Asymptotically (in the number of samples), this
approximation converges to the true posterior, and hence, SMC
methods provide an asymptotically exact solution [5], [6].

Since large numbers of samples induce high computational
cost, it is preferable to use as few samples as possible. This
requires sampling from an importance density which places
the particles in the most likely parts of the state-space either
using global or local importance densities [7], [8]. An intuitive,
local approach is to sample from the dynamic model as in the
bootstrap particle filter (BPF) [9]. However, this often requires
a high number of samples. The optimal importance density
(OID) that minimizes the particle weights’ incremental variance
uses the previous state as well as the latest measurement [10].

Unfortunately, it is often impossible to sample from the OID
and a common approach is to use a Gaussian approximation
instead [11]–[15]. These approaches use the same approxima-
tions as nonlinear Kalman filters such as the extended Kalman
filter (Taylor series) or the unscented Kalman filter (unscented
transform) to approximate the OID. However, they suffer
from two important drawbacks. First, these approximations
require that the measurement model can be written as a
nonlinear transformation of the state and additive Gaussian
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noise. Second, the importance density may be far from the
relevant area of the state-space, for example, for highly
informative measurements [16], [17] or in likelihood-free
inference problems [18].

The contribution of this letter is an importance sampling
method that approximates the local OID based on posterior
linearization and iterated conditional expectations [19], [20]
with similarities to adaptive importance sampling [21], [22] and
particle flow methods [23]–[25]. The proposed method finds
a Gaussian OID approximation for nonlinear, non-Gaussian
models without requiring the measurement to be a nonlinear
transformation of the state with additive Gaussian noise and it
is suitable for highly informative measurements. The properties
of the proposed method are evaluated in two examples.

II. PROBLEM FORMULATION

We consider inference in a latent Markovian state process
{xn ∈ Rdx}n≥0 with noisy measurements {yn ∈ Rdy}n>0

that are conditionally independent given the states such that

x0 ∼ p(x0), (1a)
xn ∼ p(xn | xn−1), (1b)
yn ∼ p(yn | xn). (1c)

Here, n is the time step, p(x0) is the probability density
function (pdf) of the initial state, p(xn | xn−1) is the dynamic
model, and p(yn | xn) is the likelihood. Also, we assume
known and non-singular conditional means and covariances.

Based on model (1), we consider sequential importance
sampling with resampling with the joint filtering posterior pdf

p(x1:n | y1:n) ∝ p(yn | xn)p(xn | xn−1)p(x1:n−1 | y1:n−1)

as the target distribution. This leads to a sample approximation
with a set of J weighted particles {xj1:n, wjn}Jj=1 as

p(x1:n | y1:n) ≈
J∑

j=1

wjnδ(x1:n − xj1:n), (2)

where δ(·) is the Kronecker delta function, xj1:n is the jth
trajectory sample, and wjn its importance weight.

The samples xj1:n are drawn from an importance density
q(x1:n) which is typically chosen such that

q(x1:n | y1:n) = q(xn | xn−1, yn)q(x1:n−1 | y1:n−1).

In this case, the weights are updated sequentially using [26]

wn ∝ wn−1
p(yn | xn)p(xn | xn−1)

q(xn | xn−1, yn)
, (3)



2

where the fraction in (3) is called the incremental weight.
To avoid sample impoverishment, the samples xj1:n are

resampled regularly according to their importance weights
wjn, which is done either at fixed intervals or according to
a resampling criterion such as the effective sample size [9],
[26], [27]. This yields the sequential importance sampling with
resampling type of particle filter (see, e.g., [2] for more details).

In order to minimize the variance of the incremental weights,
new samples for xn should be drawn according to the OID [26]

q(xn | xn−1, yn) = p(xn | xn−1, yn)

∝ p(yn | xn)p(xn | xn−1).
(4)

In practice, the OID can only be sampled from in a few
special cases. Instead, a common approach is to use a Gaussian
approximation of (4) [11], [12], [26], [28]. In this case, we
can make a Gaussian approximation of the joint density

p(xn, yn | xn−1) ≈ N
([
xn
yn

]
,

[
mx
n

my
n

]
,

[
P xn P xyn
P yxn P yn

])
(5)

and by conditioning (5) on yn, we obtain

p(xn | xn−1, yn) ≈ N (xn;mx|y
n , P x|yn ), (6a)

mx|y
n = mx

n + P xyn (P yn )−1(yn −my
n), (6b)

P x|yn = P xn − P xyn (P yn )−1(P xyn )T. (6c)

This joint approximation is particularly suitable for unimodal
dynamic models, but can be poor in multimodal cases.

The moments of the joint approximation (5) can be calculated
using Taylor series or sigma-points [29]. However, these
are local approximations around xn−1 that do not take the
measurement yn into account and more importantly, these
approaches may not work for certain types of non-Gaussian
likelihoods. The aim of this letter is to find an approximation
of the form (5) to approximate the OID for arbitrary models of
the form (1) that overcomes these limitations. This is achieved
by using generalized statistical linear regression (SLR) and
iterated conditional expectations [19], [20].

III. IMPORTANCE DENSITY

A. Generalized SLR

Generalized SLR is a statistical linearization technique to
approximate a nonlinear, non-Gaussian relationship between
two random variables as an affine transformation that minimizes
the mean squared error and also provides a measure of the
linearization error [20]. Definition 1 below reviews generalized
SLR with respect to the linearization density π(x) for random
variables x and y [20], [30]. Note that in Definition 1, the
subscript π indicates that the corresponding expectation (or
covariance) is with respect to the linearization density π(x).

Definition 1 (Generalized SLR). Given the random variables
x ∼ π(x) with moments mx

π , Eπ{x} and P xπ , Covπ{x},
and y ∼ p(y | x) with conditional moments E{y | x} and
Cov{y | x}, the generalized SLR of y with respect to π(x) is

y ≈ Ax+ b+ v, (7a)
v ∼ N (0,Ω), (7b)

with

A = P yxπ (P xπ )−1, (8a)
b = my

π −Amx
π, (8b)

Ω = P yπ −AP xπAT, (8c)

and where the moments are

my
π =

∫
E{y | x}π(x)dx, (9a)

P yπ =

∫
(E{y | x} −my

π)(E{y | x} −my
π)Tπ(x)dx

+

∫
Cov{y | x}π(x)dx, (9b)

P yxπ =

∫
(E{y | x} −my

π)(x−mx
π)Tπ(x)dx. (9c)

In practice, the integrals in (9) can be solved analytically in
a few special cases only. Instead, sigma-point or Taylor series
approximations as in Gaussian filtering for nonlinear systems
can be used [12], [29], [31].

B. OID Approximation

Generalized SLR in Definition 1 can now be used to find the
OID approximation (5)–(6) for (nonlinear and non-Gaussian)
models of the form (1) for each particle as follows. Given the
particle xjn−1, the mean mx,j

n , E{xn | xjn−1} and covariance
P x,jn , Cov{xn | xjn−1} of the dynamic model p(xn | xjn−1),
and using generalized SLR with respect to π(xn), the moments
my,j
n , P y,jn , and P xy,jn of (5) for the jth particle become

my,j
n = Ajmx,j

n + bj , (10a)

P y,jn = AjP x,jn (Aj)T + Ωj , (10b)

P xy,jn = P x,jn (Aj)T. (10c)

The linearization density π(xn) controls where the affine
approximation is most accurate. Hence, a suitable linearization
density is the pdf p(xn | xjn−1, yn) such that the linearization
is accurate around the OID for the jth particle. This results in
the linearization of E{yn | xn} that minimizes the mean square
error given xjn−1 and yn, also accounting for the linearization
error [32]. However, since we are trying to approximate the
OID to start with, this is not feasible. Instead, one can use the
following iterative procedure [19], [20].

Assume that at the lth iteration, the mean and covariance of
the posterior approximation from the l−1th iteration are given
by mx,l−1

π and P x,l−1π , respectively. Then, the lth iteration’s
approximation is given by Al, bl, and Ωl which are calculated
using SLR with respect to the l− 1th posterior approximation,
see (8). Next, using Al, bl, Ωl, and (10), p(xn | xjn−1, yn)
is approximated as in (6), which yields the lth iteration’s
conditional mean mx|y,l

n and covariance P x|y,ln . This posterior
approximation is used as the linearization density in the l+1th
iteration with mx,l

π = m
x|y,l
n and P x,lπ = P

x|y,l
n .

The iterative procedure is initialized using SLR with respect
to the dynamic model p(xn | xjn−1), and it is terminated either
after a fixed number of iterations L or upon convergence.
Suitable convergence criteria include, for example, the change
in OID approximation mean or the step size falling below a
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Algorithm 1 Iterative OID Approximation for Particle j
1: Set mx,0

π = E{xn | xjn−1}, P
x,0
π = Cov{xn | xjn−1}, and l← 0

2: do
3: Set l← l + 1
4: Calculate my,l

π , P y,lπ , and Pxy,lπ using (9) and mx,l−1
π , Px,l−1

π

5: Calculate Al, bl, and Ωl using (8)
6: Calculate m

x|y,l
n and P

x|y,l
n using (6) and (10)

7: Set mx,l
π = m

x|y,l
n and Px,lπ = P

x|y,l
n

8: while l ≤ L and not converged
9: Set m

x|y,j
n = m

x|y,L
n , Px|y,jn = P

x|y,L
n , and q(xn | xjn−1, yn) ,

N (xn;m
x|y,j
n , P

x|y,j
n )

certain threshold, or, as proposed in [19], the Kullback–Leibler
(KL) divergence between two consecutive OID approximations

Dl
KL =

1

2

[
tr((P x|y,ln )−1P x|y,l−1n )− dx (11)

− log

(
|P x|y,l−1n |
|P x|y,ln

)
+ ‖mx|y,l

n −mx|y,l−1
n ‖2(

P
x|y,l
n

)−1

]
,

falling below a threshold ε > 0 which is typically chosen
between 1× 10−5 and 0.1, see [19].

This yields the iterative conditional expectation importance
density approximation method in Algorithm 1, where we may
need to use Taylor series or sigma-points to approximate (9).
Once the algorithm terminates, the OID approximation

p(xn | xjn−1, yn) ≈ N (xn;mx|y,j
n , P x|y,jn ) (12)

is obtained, which is then used for sampling.
Without iterations (L = 1), this method is a generalization

of the Taylor series or sigma-point OID approximations to
arbitrary likelihoods [10]–[12]. However, some advantages
specifically come from the iterative re-linearization using the
currently best posterior approximation [19]. Algorithm 1 is run
for each particle and for at most L iterations, which yields an
upper limit on the computational cost of O(LJ). In contrast,
non-iterative importance densities scale according to O(J).

C. Convergence

1) Convergence to the OID: SLR with respect to the OID
minimizes the mean squared error of the affine approximation
to the conditional mean, also accounting for the linearization
error. Local convergence proofs for Gaussian filters based on
iterated SLR have been provided in [19], [20] and for additive
Gaussian noise models, these can be seen as an approximate
Kullback–Leibler minimization [19].

In particular, it has been shown that the iterative linearization
approach converges to the local mode of the linearization
density if it is initialized sufficiently close to that mode (see [20]
for the specific conditions). Thus, if a particle is sufficiently
close to a mode of the OID, the mean of the OID approximation
for the corresponding particle will converge to this mode. This
implies that multimodal posteriors do not pose a problem for
the proposed algorithm as long as the posterior at the previous
time step includes particles sufficiently close to the current
time step’s modes. However, due to this mode-seeking nature,
heavy-tailed OIDs (and posteriors) may cause problems and
generally can not be handled well by the proposed approach.

2) Filter Convergence: A sufficient (but not necessary)
condition for mean squared error convergence of the filter
is that the importance weights are upper bounded [6]. Thus
provided that this condition holds for the model at hand, the
proposed filter is guaranteed to converge. However, it has been
shown that for Gaussian importance densities, the boundedness
is not always guaranteed [33], which might or might not lead
to non-convergence of the filter.

D. Practical Considerations

An important aspect to note is that using a Gaussian
approximation of the form (6) may yield a poor importance
density if the measurement covariance P yn becomes very small.
This typically happens when the gradient of the measurement
model approaches zero, together with small measurement noise
(informative observations). Consequently, the linearization and
thus also the importance density approximation become poor.

The iterations of the proposed method are able to correct this
problem gradually and eventually, a good OID approximation
is obtained again. However, this process typically takes many
iterations and thus, in practice, it is preferable to prevent
this from happening. In this case, either damped posterior
linearization [34] or the following diagnostic can be employed.

Given the joint approximation (5), the test statistic

γn , ‖yn −my,l
n ‖2(Py,l

n )
−1 , (13)

where my,l
n and P y,ln are the predicted measurement mean and

covariance after the lth iteration, respectively, can be used to
evaluate the goodness of the linearization. Under the Gaussian
assumption, γn follows a χ2 distribution with dy degrees of
freedom. Thus, if γn exceeds a threshold γT , the iterations
can be stopped and the last valid approximation can be used
instead. A suitable threshold γT is obtained by choosing a tail
probability (e.g., κ = 0.05) followed by evaluating the inverse
cumulative distribution function of the χ2 distribution at 1−κ.

IV. NUMERICAL ILLUSTRATIONS

We evaluate the method in two examples and compare it to
the BPF, one-step OID approximation [11], [12], Gaussian flow
(GFPF) OID approximation [24], and the particle flow particle
filter (PFPF) with local particle flow [25]. We run 100 Monte
Carlo simulations with 100 time steps. Details of the models
and parameters are given in the Supplementary Material.

A. Univariate Nonlinear Growth Model

First, we consider the univariate nonlinear growth model [9],
[35], a benchmark problem for nonlinear filtering algorithms.
We use the standard parametrization from the literature, but
assume the measurement variance to be 1× 10−2, which is two
magnitudes lower than commonly considered. Despite being an
univariate problem, there are two particular challenges: First,
due to the square in the observation model, no information
about the state’s sign is measured, which gives rise to a bi-
modal posterior for large values of the state. Second, the low
measurement noise causes the posterior to be peaky, which is
well-known to be challenging for sampling-based inference.
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TABLE I
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE INDICATORS FOR THE COMPARED METHODS (MULTIVARIATE RICKER POPULATION MODEL).

Method J RMSE Time / s Resampling / % ESS ESS / %

BPF 2 500 3.5 (±0.5) 0.99 (±0.1) 98.1 (±0.96) 101 (±16) 4.0 (±0.6)
BPF 10 000 3.4 (±0.8) 3.2 (±0.3) 98.0 (±1.0) 410 (±73) 4.1 (±0.7)
BPF 50 000 3.3 (±0.5) 11.5 (±0.7) 98.2 (±0.89) 1 975 (±331) 4.0 (±0.7)
One-step 250 3.6 (±0.6) 4.9 (±0.4) 93.9 (±0.1) 27.3 (±2.8) 10.9 (±1.1)
One-step 500 3.5 (±0.5) 9.8 (±0.8) 93.7 (±0.1) 52.5 (±5.2) 10.5 (±1.0)
GFPF 100 3.3 (±0.5) 80.7 (±0.9) 98.8 (±0.4) 15.7 (±0.7) 15.7 (±0.7)
GFPF 250 3.5 (±0.6) 204.6 (±7.8) 99 (±0.1) 34.5 (±1.45) 13.8 (±0.6)
PFPF 100 3.3 (±0.5) 11.3 (±0.7) 53.8 (±3.0) 34.7 (±1.4) 34.7 (±1.4)
PFPF 250 3.3 (±0.5) 27.8 (±2.5) 59.6 (±2.8) 78.8 (±3.4) 31.5 (±1.4)
Proposed 100 3.7 (±0.6) 4.7 (±0.5) 49 (±3.0) 37 (±1.4) 37 (±1.4)
Proposed 250 3.6 (±0.5) 10.5 (±0.5) 51.8 (±2.7) 88.1 (±3.4) 35.2 (±1.4)
Proposed 500 3.4 (±0.4) 21.7 (±1.2) 53.7 (±2.9) 170 (±8.4) 34.1 (±1.8)
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Fig. 1. True posterior pdf ( ) and particle locations for the BPF ( ), one-
step OID approximation ( ), GFPF ( ), PFPF ( ), and the proposed method
( ). Top: Full posterior, bottom: detailed view of the two modes.

For the proposed method, we use ε = 1× 10−2 and L = 5.
For the GFPF, we use 5 equally spaced integration steps and
for the PFPF, we use the parameters from [25].

Fig. 1 shows the true posterior (calculated using a dense
grid filter) together with the particle locations of the filters for
time step n = 1 and J = 100. Fig. 1 (top) shows the complete
posterior that exhibits two narrow modes which are difficult to
approximate using particles. Most of the BPF’s and one-step
OID approximation’s particles are where the posterior is close
to zero, whereas the GFPF is somewhat better but still has a
significant number of particles far from the modes. In contrast,
the detailed views of the modes (Fig. 1, bottom) show that
only the PFPF and the proposed method find both modes and
concentrate the particles in the corresponding areas. Also, the
BPF, as well as one-step approximation and GFPF only have
few particles close to the smaller mode, which causes these
filters to loose track of that mode after a few more time steps.
Further results are provided in the Supplementary Material.

B. Multivariate Ricker Population Model
In this example, we consider a multivariate Ricker model

for interacting populations [36]. The model includes migration
between different localized populations of a species as well as
population- and species-level stochastic effects. We consider
a 10-dimensional version of the model together with a left-
skewed, heavy-tailed, generalized Poisson likelihood [37],
[38]. The aim of this example is to compare the sampling
effectiveness of the filters. Hence, we choose the number of
particles such that approximately the same (asymptotic) root
mean squared error (RMSE) is achieved. Furthermore, we
chose different particle numbers to evaluate the effect on the
computational time. In this example, we use 10 integration
steps for the GFPF and the parameters as in [25] for the PFPF.

The results are shown in Table I. The proposed method is
able to keep the highest relative effective sample size (ESS)
and the lowest resampling rate, followed by the PFPF, the
GFPF and one-step OID approximations. Hence, the proposed
method is able to sample in the high probability areas of the
state-space and produce a high fraction of high weight samples.
Note that the GFPF is considerably slower as it requires solving
a Sylvester equation for each particle and integration step.

Despite the better placement of the particles of the proposed
method, in terms of computational complexity and absolute
ESS, the BPF performs best in this example, mainly due
to the possibility of efficiently implementing the weight
calculations for this model. However, advantages of using a low
number of particles in a particle filter include lower memory
requirements for path storage [39] and lower computational
requirements when a smoothing pass follows [40], [41]. In this
case, the proposed method is preferable as it achieves similar
performance at considerably lower sample size.

V. CONCLUSIONS

In this paper, a Gaussian approximation to the OID for SMC
methods for nonlinear, non-Gaussian state-space models has
been presented. The method is able to efficiently sample in
the high-probability regions of the state-space, as shown by
the high relative ESS and low number of resampling steps,
and is particularly suitable for models with unimodal dynamic
models. Possible extensions of the method include its use in
auxiliary particle filtering [42] and SMC for static models [43],
[44], or to make use of Rao–Blackwellized SLR [45], [46].
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and smoothing in nonlinear and non-Gaussian systems using conditional
moments,” IEEE Signal Processing Letters, vol. 25, no. 3, pp. 408–412,
March 2018.

[21] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Mı́guez, and P. M.
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