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Abstract: Received signal strength (RSS) changes of static wireless nodes can be used for device-1

free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration2

data, either RSS measurements from a time period when the area was not occupied by people, or3

measurements while a person stands in known locations. Such calibration periods can be very4

expensive in terms of time and effort, making system deployment and maintenance challenging.5

This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing6

for estimating the unknown RSS model parameters, liberating the system from supervised training7

and calibration periods. In order to fully utilize the EM algorithm’s potential, a novel localization8

and tracking system is presented to estimate a target’s arbitrary trajectory. To demonstrate the9

effectiveness of the proposed approach, it is shown that: i.) the system requires no calibration10

period; ii.) the EM algorithm improves the accuracy of existing DFLT methods; iii.) it is computa-11

tionally very efficient; and iv.) the system outperforms a state-of-the-art adaptive DFLT system in12

terms of tracking accuracy.13

Keywords: Received signal strength, localization and tracking, Bayesian filtering and smoothing,14

parameter estimation, expectation-maximization algorithm15

1. Introduction16

In developed nations, the demographic change in the population is creating many17

challenges both from a societal and an economic standpoint. Research into aging, age-18

related conditions, and the means to support an aging population has therefore become19

a priority for many governments around the world [1]. Ambient assisted living (AAL)20

is the European Union’s funding program that aims at developing "information and21

communication technologies (ICT) in a person’s daily living and working environment22

to enable them to stay active for longer duration, remain socially connected and live23

independently into old age" (www.aal-europe.eu). This can be achieved by developing24

both preventive and monitoring systems for aging safely at home, in the community,25

and at work. In this regard, radio frequency (RF) sensing is particularly suitable for26

realizing AAL systems. The main advantages of the technology are fourfold:27

1. it is passive and does not require users to carry obtrusive and uncomfortable28

sensors [2];29

2. it is suitable for a wide range of monitoring purposes such as localization and30

tracking [3], fall detection [4], vital sign monitoring [5], gesture recognition [6] and31

behavioral sensing [7];32

3. RF signals can penetrate walls, clutter and other occlusions, unlike many other33

sensors that have a limited field of view [8]; and34
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Figure 1. The components of a typical and proposed DFLT system. The gray shaded block and
localization and tracking block is common to conventional systems, whereas the proposed system
is composed of the non-shaded blocks only. The notation is introduced in Sections 3 and 4.

4. it is privacy preserving which increases acceptance of the monitoring technology,35

unlike vision-based systems that are intrusive [9].36

The focus of this paper is on device-free localization and tracking (DFLT), because37

position and motion embed a wealth of information about people and can be used to38

develop various AAL applications.39

DFLT methods use received signal strength (RSS) measurements between static40

wireless nodes to provide location estimates of a person inside the monitored area. In41

DFLT, there are two fundamental challenges. Firstly, having a model of the RSS as a42

function of person’s location and, secondly, maintaining an accurate model over time.43

Fingerprint-based and data-driven DFLT methods use a supervised training period44

to collect RSS measurements that are labeled with a person’s known locations [10,11].45

The labeled data is used for characterizing the unique propagation properties of the46

environment. During run time, the non-parametric models can be used to accurately47

localize people even in challenging indoor deployments. As a drawback, the training48

process is laborious and the performance degrades drastically as the environment is49

altered [4]. Parametric model-based DFLT approaches use physical models to describe50

the changes in RSS with respect to the locations of the sensors and person [2,12]. Typically,51

these methods only require a short empty-room calibration period when the area is not52

occupied by people and hence, they are easier to deploy than fingerprint systems.53

A downside is that the model inaccuracies limit the localization accuracy and also54

these systems require recalibration and retraining if the environment changes. Both55

systems can be realized with the Calibration Data unit and Localization and Tracking56

unit shown in Fig. 1, and the main difference is how the system is calibrated during57

the calibration period k ∈ [a, . . . , b]. Model-based systems only require the RSS (Y =58

[ya, . . . , yb]), whereas fingerprinting methods also require the person’s location (X =59

[xa, . . . , xb]). Considering an AAL application, all empty-room calibration periods and60

training procedures that require human effort are very inconvenient since it can take from61

several minutes [2,13] up to half an hour [11,14]. This paper presents a parametric model-62

based DFLT system that requires no Calibration Data unit, streamlining the requirements63

for deployment. The proposed system is presented in Fig. 1 and the system can be64

realized using the Localization and Tracking unit, the Smoother unit and the Parameter65

Estimator unit.66

The work in this paper addresses three major problems associated with the calibra-67

tion of typical DFLT systems. First of all, most DFLT methods require an empty-room68

calibration period when the area is not occupied by people to calculate the mean RSS69

level µ [2,15]. Typically, the RSS changes are defined with respect to µ and an accurate70

estimate is a strict requirement of DFLT. Second, it is a common presumption that the71
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(a) (b)

Figure 2. Measured ( ) and modeled ( ) RSS as a function of excess path length for two example
links. The shaded region depicts the 3σ confidence interval. In (a), the model parameters are
Θ = [−67.02, 3.42, 0.03, 3.92] and in (b), Θ = [−56.61,−5.71, 0.04, 0.80].

model parameters are the same for all links1 [16,17]. Third, model-based DFLT methods72

that take into account the unique model parameters for each link, require a calibra-73

tion period when a person moves along a known training trajectory to estimate them74

[12,18]. If µ is constant and the model parameters are the same for all the links, only75

a short empty-room calibration period is enough. However, neither of these are valid76

assumptions in general scenarios. In Fig. 2, the measured and modeled RSS as a function77

of excess path length (see Eq. (6)) for two example links is illustrated. As shown, the78

model parameters of the two links differ significantly from one another invalidating the79

common assumption. The used model is the exponential model [19] (see Eq. (26)) with80

parameters, Θ = [µ, φ, λ, σ2], which are estimated using nonlinear least squares over the81

measurements and known trajectory.82

This paper aims to address the limitations and drawbacks of typical DFLT methods83

by developing a system that does not require separate empty-room calibration periods84

and that is capable of learning the unique model parameters for each link during the85

time of operation. The development efforts of this paper are validated using a 75 m2
86

open indoor deployment and a 82 m2 residential apartment deployment, and it is shown87

that the proposed system can achieve an average tracking accuracy as low as 17 cm in88

the open environment and 37 cm in the apartment. This paper makes the following89

contributions:90

• A Gaussian filter is presented to estimate the state of the target and a novel Mea-91

surement Selection unit is developed to select and combine the measurement mod-92

els of two DFLT methods into one filtering algorithm. The developed system is93

demonstrated to outperform a state-of-the-art adaptive DFLT system and reduce94

the tracking error by 42%.95

• A Gaussian smoother is implemented and it is used to evaluate the expectations96

involved in the expectation step of the Expectation-Maximization (EM) algorithm.97

Moreover, we show how the maximization step of the EM algorithm is available in98

closed form for the considered measurement model. The presented EM algorithm99

is computationally very efficient, up to 18 times faster than current solutions used100

in the literature.101

• An EM algorithm is presented for estimating the unknown RSS model parameters,102

liberating the system from the need for supervised training and calibration periods.103

It is demonstrated that the EM algorithm not only improves the accuracy of the104

introduced system, but also other DFLT systems.105

1 Each wireless link has a unique transmitter, receiver and frequency channel combination.
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• The experiments conducted in this paper, together with Matlab code to run the106

presented filtering, smoothing and EM algorithms are made publicly available and107

are published in [20]. The aim is to lower the threshold to start research in the area108

and advance the field of DFLT in general.109

The rest of the paper is organized as follows. Related work is discussed in Section110

2. Section 3 formulates the problem and presents the localization and tracking system.111

The parameter estimation framework is presented in Section 4. The experiments that112

were conducted are introduced in Section 5 and the results are presented in Section 6.113

Thereafter, conclusions are drawn.114

2. Related Work115

In this section, related works that utilize calibration and training are summarized.116

We begin the section by introducing the most common method in DFLT — using an117

empty room calibration period. Systems that utilize online training are discussed there-118

after. Lastly, works that calibrate the model using supervised or unsupervised training119

are presented.120

Empty room calibration - Most DFLT systems define the RSS changes with respect121

to µ, often referred to as the reference or baseline RSS. The system performance depends122

on an accurate estimate of µ and therefore, it is typically calculated over several minutes123

when the area is not occupied by people [2,17,21]. In this paper, µ is one of the parameters124

estimated by the EM algorithm and it is shown that the system can be initialized without125

having an empty-room calibration period.126

It is worth noting that methods that do not define the RSS changes with respect127

to µ have also been proposed [8,22]. Instead, these methods calculate the sample RSS128

variance over a fixed time window and do not require calibration. A downside is that129

variance-based methods cannot locate stationary targets because in such scenarios, the130

variance drops close to the noise floor and does not show up in the estimated image.131

Online calibration - Several works have proposed calibrating the reference RSS µ132

[13,23], or measurement noise variance σ2 [24,25] online. The system can be deployed133

without a calibration period when the reference RSS is estimated on-the-fly. Moreover,134

improved estimators can be developed when better noise models are available [22,24,25].135

These approaches first estimate the target state and then the parameters in a sequential136

order. However, such a decoupling is not always possible, or degrades the system137

performance if the state estimates are inaccurate. Unlike online calibration methods, this138

work uses the EM algorithm to estimate µ and σ2 from batches of data that is collected139

while the person is inside the monitored area.140

Estimating the RSS distribution (defined by µ and σ2) in two states, when a person141

is crossing or not crossing the imaginary link line between the transceivers, has been142

explored in [26–30]. Not only can this information be used to localize people, but also143

to determine if the monitored area is occupied — a non-trivial task in RF sensing. The144

aforementioned works model the target location as a binary state: either the person is in145

between the transmitter (TX) and receiver (RX), or they are not. In this paper, we use a146

continuous measurement model and there is no need to explicitly determine whether a147

target is crossing the link or not.148

Model calibration - The works in [12,14,18] use an offline calibration phase for149

estimating parameters of the measurement model. During calibration of the parameters,150

a person moves along a known training trajectory and visits locations of interest. The RSS151

is recorded between the static wireless nodes and the measurement model parameters152

are estimated. During the online phase, the calibrated measurement model is used in153

the tracking algorithm. The works cited above demonstrate high tracking accuracy, but154

the calibration phase is inconvenient since it can take up to 30 minutes as in [14]. In this155

paper, the estimated trajectory and EM algorithm are used for unsupervised learning.156

The position estimates can be inaccurate in the beginning, but as the person moves in157

the area, the model parameters can be estimated more accurately resulting in improved158
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tracking performance. The proposed parameter estimation method does not require159

human intervention other than normal movement in the area.160

Parameter estimation - This present work is most closely related to the develop-161

ments in [21,31], which have an online calibration module as well as a batch-estimation162

module for tuning the model parameters. The aforementioned works use an imaging163

solution and the accuracy is inevitably affected by the binary measurement model and164

resolution of the pixels. Instead, we use a continuous measurement model and the165

implemented Bayesian filter directly estimates the kinematic state of the target using the166

RSS and higher tracking accuracy is expected [19]. Furthermore, the existing approaches167

use a nonlinear least squares solution to estimate the model parameters [21,31], while168

the proposed method solves the problem using a maximum likelihood approach based169

on a computationally efficient EM algorithm. Since unsupervised learning depends on170

accurate position estimates, the introduced system is superior with respect to [21,31].171

The experimental results demonstrate that the proposed system is able to reduce the172

tracking error by 42% or more and the EM algorithm is computationally up to 18 times173

faster than the nonlinear optimization method used in [21].174

Expectation-maximization has also been used for RSS-based DFLT in [19,32]. How-175

ever, these approaches use a mini-batch- and particle-filtering-based online EM approach.176

While the online EM approach is attractive for on-the-fly estimation of the parameters177

and rapid adaptation to changing environments, the method also suffers from some178

important drawbacks. First, since the expectation step is based on particle filtering,179

which yields a degenerate approximation of the smoothing posterior density required by180

EM [33,34], it is computationally heavy and the estimation of the marginal log-likelihood181

may be poor. Second, in [19] and [32] the maximization step cannot be done in closed182

form and it is implemented by propagating a set of sufficient statistics and the numer-183

ical integration is carried out using importance sampling. In contrast, in this paper,184

the expectation step is calculated using a Gaussian approximation for the smoothing185

distribution which can be computed efficiently and does not suffer from trajectory de-186

generation. Furthermore, we show that the maximization step of the EM algorithm187

is available in closed form for the considered measurement model and implemented188

Gaussian smoother. Hence, with respect to [19,32], the solution presented in this paper189

is more tractable in terms of the approximation of the expectation and maximization190

steps and computational complexity. In addition, the EM algorithm used in [19,32]191

is only evaluated with simulations, whereas we validate our proposed method using192

experimental data. The EM algorithm is widely used in different applications and the193

readers are referred to [35, Ch. 12] for an introduction to parameter estimation and to194

[36,37] for a more general treatment of parameter estimation in nonlinear dynamical195

system using Gaussian filtering and smoothing.196

3. Localization and Tracking197

This work aims to track the kinematic state of a target using the RSS measured198

between static wireless nodes. The components of the introduced Localization and Tracking199

unit and their relations are visualized in Fig. 3 and presented in the following. We begin200

by presenting the models used for localization and tracking. Thereafter, the estimation201

tasks are presented and they are performed by two complementary blocks: i.) the Radio202

Tomographic Imaging (RTI) unit summarized in Section 3.2, and ii.) the Extended Kalman203

Filter (EKF) unit presented in Section 3.3. The EKF uses the combination of RSS and RTI204

position estimates in the measurement update, and the Measurement Selection unit selects205

and combines the measurements as described in Section 3.4.206

The idea to augment the EKF with RTI position estimates was originally presented207

in [3]. The localization and tracking system presented in this paper further improves208

the filter by introducing a Measurement Selection unit which selects and combines the209

measurements in a way that enhances the tracking accuracy. In addition, we propose a210

novel RTI positioning scheme that also estimates covariance of the position estimates.211
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Figure 3. Major components of the proposed localization and tracking method. The notation is
introduced in Sections 3 and 4.

Furthermore, the developed localization and tracking system performs no low-pass212

filtering of the RTI images in contrast with the system presented in [3]. The reason is213

that image filtering has a negative impact on the parameter estimation algorithm since it214

introduces a lag in the state estimates and also causes correlated position errors.215

3.1. Models216

3.1.1. Dynamic Model217

For DFLT, the state of the system in two dimensional Euclidean space can be defined
as

xk =
[
xk ẋk yk ẏk

]T (1)

where xk and yk are the x- and y-coordinates, and the velocity components are denoted
as ẋk and ẏk. This state representation is particularly suitable for DFLT because the
position and velocity define the temporal and spectral properties of the RSS [38]. This
state evolves at time k in accordance with

xk = Fxk−1 + qk−1, (2)

where F is the state transition matrix of the dynamic model and qk−1 ∼ N (0, Q) is
Gaussian process noise. As a person is not expected to change velocity very rapidly
and unexpectedly, a common choice of F in RSS-based DFLT [17,21] is the second-order
kinematic model [39, Ch 6], given by

F = I2 ⊗
[

1 τ
0 1

]
, Q = I2 ⊗ q

[ 1
3 τ3 1

2 τ2

1
2 τ2 τ

]
(3)

where I2 is an identity matrix, ⊗ the Kronecker product, q the power spectral density of218

the process noise and τ the sampling period.219

3.1.2. Measurement Model220

Consider a wireless network, where each of the S nodes is able to communicate221

with the other S− 1 nodes. Moreover, the wireless devices are able to communicate on222

C different frequency channels. Each transmitter, receiver and channel combination is a223

unique link and the total number of measured links is L = C · S · (S− 1). It is to be noted224

that full connectivity is not mandatory for DFLT. It is also to be noted that we do not225

assume channel reciprocity. The reason being, although the radio channel is reciprocal,226

measurements of the radio channel are not reciprocal and parameters of the reciprocal227

link can be different [40].228

The nodes communicate in round-robin fashion and at time k, one node transmits229

and the other nodes receive. At the next time instant, k + 1, the transmission turn is230

assigned to the next node in the schedule. The nodes transmit sequentially and one231

communication cycle consists of one transmission by every node. At the end of the232
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communication cycle, the nodes switch simultaneously to the next frequency channel in233

a predefined list. Thereafter, a new communication cycle is initiated. Once each node has234

transmitted on every frequency channel, the schedule is restarted from the beginning.235

For the considered problem, the measurement system at time k can be defined as

yk = Ik(H(xk)θ+ rk), (4)

where yk ∈ R(S−1)×1 is the measured RSS, Ik ∈ R(S−1)×L a deterministic link indicator
matrix defined by the schedule (see Section 3.3.1), H(xk)θ the linear-in-parameters
measurement model and rk ∼ N (0, R) is Gaussian measurement noise. The human-
induced RSS changes are modeled using an exponential model [19] and the complete
linear-in-parameters model is defined as

H(xk) =




1 e−∆1,k/λ 0 0
0 0 1 e−∆2,k/λ

. . .
1 e−∆L,k/λ


,

θ =
[
µ1 φ1 µ2 φ2 . . . µL φL

]T,

(5)

where λ is the decay rate, µl the reference RSS and φl the measurement gain, H(xk) ∈
RL×2L and θ ∈ R2L×1. In (5), the excess path length ∆l,k defines an ellipse having the

foci at the TX and RX and it relates the person’s location pk =
[
xk yk

]T to link l with
TX m and RX n by

∆l,k , ‖pm − pk‖+ ‖pn − pk‖ − ‖pm − pn‖, (6)

where pm and pn denote the TX and RX positions in respective order. Lastly, the measure-236

ment noise covariance is assumed diagonal and it is defined as R = diag
(
σ2

1 , σ2
2 , . . . , σ2

L
)
.237

It is to be noted that the RSS can be measured at most for S− 1 links simultaneously238

because only one node transmits at a time. Moreover, to measure the L links takes S · C239

transmissions and S · C · τ duration of time.240

3.2. Radio Tomographic Imaging241

3.2.1. Image Estimation242

RTI estimates a discretized RSS change field, denoted by bc, using the RSS of
J = S(S− 1) links measured on frequency channel c. As in [41], the RSS is assumed to
be a linear combination of voxel changes plus noise

zc = Wcbc + rc, (7)

where zc ∈ RJ×1 is the mean-removed RSS, Wc ∈ RJ×N a weight matrix that relates243

the spatial change field bc ∈ RN×1 to the RSS, N the voxel number and rc ∈ RJ×1
244

the measurement noise. The measurement vector and noise covariance in (4) can be245

decomposed as y =
[
yT

1 yT
2 . . . yT

C
]T and R = diag(R1, R2, . . . , RC) where yc and246

Rc denote the RSS and measurement noise covariance on channel c. Now, the RTI247

measurement and noise vectors are related to the model in (4) via zc = yc − µc and248

rc ∼ N (0, Rc).249

The minimum mean square error estimate for the model in (7), with zero-mean
Gaussian image prior b ∼ N (0, Σb), is

b̂c = Πczc, where

Πc =
(

WT
c R−1

c Wc + Σ−1
b

)−1
WT

c R−1
c .

(8)
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(a) (b)

Figure 4. Two example RTI images and the position and covariance estimates calculated using (12)
and (13). In the image, the deep blue regions indicate areas that are not occupied by people and
the bright regions indicate estimated obstructions. Furthermore, the plus sign indicates the true
position, the crosses are the position estimates and the dashed line illustrates the 3σ uncertainty
ellipse.

The covariance matrix Σb for pixels m and n is [41]

{Σb}m,n = σ2
b exp

(−‖pm − pn‖
δd

)
, (9)

where σ2
b is the variance of each pixel and δd is a user-defined space constant. For link l

and pixel n, we define the elements of Wc as

{Wc}l,n =
φl
‖φl‖

e−∆l,n/λ, (10)

where φl and λ are the measurement gain and decay rate of the model defined in (5),250

‖φl‖ is a normalization term and ∆l,n the excess path length. In literature, W has taken251

many forms, and the reader is referred to [42] and [15] for further details.252

The projection matrix Πc is channel dependent and it is computed independently253

for each of the channels. However, Πc has to be computed only once at the beginning254

of the experiment and the real-time computation of the image requires only one matrix255

multiplication, of O[NL] multiplications and additions. The spatial change field is256

estimated at the end of each communication cycle when k mod S = 0 and zc contains257

measurements from time instant k − S + 1 to k. The image estimate on channel c is258

denoted from now on as b̂k, in order to prevent using two time notations.259

3.2.2. RTI positioning260

For a single target, it is expected that the pixels with highest intensity locate near the
target and therefore, localizing the person can be postulated as finding the mode of b̂k
[43]. The mode is in the set of pixels with intensity higher than γB, where B = max(b̂k)
denotes the maximum component of b̂k and 0 ≤ γ ≤ 1 is a threshold. The threshold is a
tuning parameter between two extremes: if γ = 0 all pixels are taken into account and if
γ = 1 only a single pixel is accounted for and we have empirically found that γ = 0.7
provides a good overall performance. To simplify the notation, let us define

b̃k =

{
b̂k if b̂k ≥ γB
0 otherwise

, (11)
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and w = b̃k/ ∑ b̃k. Now, the position can be estimated as the weighted sum of N pixels

p̂k ,
[

x̂k
ŷk

]
=

N

∑
n=1

wnpn, (12)

where pn =
[
xn yn

]T are the pixel coordinates and wn the weight for pixel n. Further-
more, the sample covariance of the pixels is

Ck =
N

∑
n=1

wn(pn − p̂k)(pn − p̂k)
T. (13)

Two example RTI images are shown in Fig. 4 together with the position and covari-261

ance estimates. The image on the left shows that the pixels with b̂k ≥ γB are centered262

around the true location, the position estimate is accurate, and the estimated covariance263

is small. The image on the right is noisy and does not clearly indicate the person’s264

location. The estimated position is over a meter away from the true location and the265

estimated covariance is significantly higher then in the other image. Estimating the co-266

variance allows taking such uncertainties into account and the tracking filter developed267

in the next section gives less weight to position estimates that are estimated from noisy268

images.269

3.3. Tracking Filter270

The extended Kalman filter (EKF) computes the marginal posterior distribution of xk271

for each time step k using the data y1, . . . , yk and assuming Gaussian approximations for272

the filtering densities so that p(xk | y1:k) ≈ N (xk | mk, Pk). Different than conventional273

Bayesian filtering implementations for DFLT [12,17,19], in this work, the measurement274

model of the filter is augmented with the position estimates from RTI as in [3]. This275

bounds the filter’s measurement residuals by the position errors of the imaging approach.276

Therefore, the developed filter has the robustness of an imaging method and the tracking277

accuracy of a Bayesian filter. The filtering algorithm consist of three steps: i) prediction278

step, ii) model selection, and iii) measurement update step. We simply refer to the introduced279

filter as EKF, although it is more complex then a first order filter that would solely use280

RSS. In the following, we first present the observation model of the EKF and thereafter,281

the prediction and update steps of the filter.282

3.3.1. EKF Observation Model283

Recall that at a given time instant k, at most S − 1 links are measured. Instead
of using the complete model defined in Eq. (5), the EKF operates on a subset of the
measurement model. We refer to the subset as the observation model and essentially,
it contains the measurements and associated models sampled at time k. Thus, the
observation model is defined by the transmitter (TX) and channel identifiers and it
changes with time. To explicitly define the observation model, consider the set of nodes
S = {1, 2, . . . , S} and the set of channels C = {1, 2, . . . , C}. Then, the link index l
corresponding to the transmission by node i ∈ S on frequency channel c ∈ C and
received by node j ∈ S is

l =

{
(c− 1)S(S− 1) + (i− 1)S + j− i i < j,
(c− 1)S(S− 1) + (i− 1)S + j− i + 1 i > j.
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The receivers (RXs) that measure the RSS at time k areR = S \ {i} and |R| = S− 1. Now
if m = [1, . . . , |R|], we can define the indices of the link selection matrix, measurement
model, and noise covariance as follows:

{Ik}m,l = 1,

{H(xk)θ}m,1 = {H(xk)θ}l,1,

{R}m,m = {R}l,l .

(14)

In addition, the EKF requires the Jacobian ofH(xk)θ, and the elements of this matrix are
given by [

∂{H(xk)θ}m,1
∂x

∂{H(xk)θ}m,1
∂y

]T
=

{H(xk)θ}m,1

λ

(
pi − pk
‖pi − pk‖

+
pj − pk

‖pj − pk‖

)
,

(15)

where pi and pj denote the positions of nodes i and j. The Jacobian for m is

{Hx}m,· =
[

∂{H(xk)θ}m,1
∂x 0 ∂{H(xk)θ}m,1

∂y 0
]
. (16)

3.3.2. Prediction step284

Given that the dynamic model in (2) is linear, the prediction step of the first order
additive noise EKF can be expressed as [35, Ch 4]

m−k = Fmk−1,

P−k = FPk−1FT + Q,
(17)

where mk and Pk denote the state estimate and covariance in respective order, and m−k285

and P−k are the predicted mean and covariance.286

3.3.3. Measurement Update287

The measurement selection unit presented in Section 3.4 calculates the measurement
residual νk and forms the associated measurement noise covariance matrix R and mea-
surement model matrix H. Using these, the mean m−k and covariance P−k can be updated
using [35, Ch 5]

Sk = HP−k HT + R,

Kk = P−k HS−1
k ,

mk = m−k + Kkνk,

Pk = P−k −KkSkKT
k .

(18)

3.4. Measurement Selection288

The DFLT system implementations using Bayesian filtering or imaging (in particular
RTI) have different characteristics. Depending on the target’s position and system
deployment, the performance of the introduced filter can be improved by enabling or
disabling certain measurements. For example, the covariance of the RTI position estimate
can be small and biased. On the other hand, the filter can converge to an incorrect
trajectory and the estimated covariance is not able to account for the uncertainties in
the state estimate. To solve these issues, a logic to select the effective measurements is
introduced. The procedure is based on the normalized innovation squared (a.k.a. square
of the Mahalanobis distance) [39, Ch. 4]

ε1 =
(
p̂k −Hmk

)T(HPkHT + Ck
)−1(p̂k −Hmk

)
, (19)
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where

H =

[
1 0 0 0
0 0 1 0

]
(20)

is the linear measurement model. The test statistic has a χ2 distribution with two degrees
of freedom and it can be used to assess whether the realized RTI estimate is unexpectedly
large with respect to the prior predictive distribution. In addition, the square of the
Mahalanobis distance between two successive RTI estimates is calculated

ε2 =
(
p̂k − p̂k−S

)T(Ck + Ck−S
)−1(p̂k − p̂k−S

)
, (21)

where p̂k−S and Ck−S denote the previous RTI position estimate and covariance. The test289

statistic can be used to assess whether the prior predictive distribution has converged to290

an incorrect trajectory.291

For simplicity, the index notation is dropped and the measurement model, measure-292

ment noise covariance matrix, and Jacobian are simply denoted as: H(xk)θ ∈ R|R|×1,293

R ∈ R|R|×|R| and Hx ∈ R|R|×4, respectively. The resulting logic to select the measure-294

ment models is presented below in which T denotes the confidence interval of the χ2
295

distribution with two degrees of freedom.296

• if ε1 > T and ε2 ≤ T — It is likely that the filter has diverged. Use only the output297

of RTI, that is, R = Ck, H = H and νk = p̂k −Hm−k .298

• else if ε1 ≤ T — Normal operation, concatenate the models: R = blkdiag(Ck, R),299

H =
[
HT HT

x
]T and νk =

[(
p̂k −Hm−k

)T (
yk −H(m−k )θ

)T]T
300

• else — The RTI position estimate is likely inaccurate, use only the RSS measure-301

ments, that is, R = R, H = Hx and νk = yk −H(m−k )θ.302

The measurement residual νk, measurement noise covariance matrix R and measurement303

model matrix H are used by the EFK update step presented in Section 3.3.3.304

4. Parameter Estimation305

In this section, an EM algorithm based on Gaussian smoothing is developed. The306

section begins by introducing the Gaussian smoothing recursion for the considered307

problem. Thereafter, we show how the developed Gaussian smoother can be used to308

evaluate the expectations involved in the E-step of the EM algorithm. We also derive the309

solution of the maximization problem in the M-step in closed form for the considered310

measurement model.311

4.1. Gaussian Smoothing312

In this section, we present the smoothing recursions for the Rauch-Tung-Striebel
smoother (RTSS). The RTSS computes the marginal posterior distribution of the state
by conditioning on the whole measurement data. The smoothing solution is given by
p(xk | y1:K) ≈ N

(
xk | ms

k, Ps
k
)
, where K ≥ k, which can be calculated recursively. The

smoothing recursion starts from the last time step K and proceeds backwards to the first
time step, and the recursion is given by [35, Ch 8]

P−k+1 = FPkFT + Q,

Gk = PkFT
(

P−k+1

)−1
,

ms
k = mk + Gk

(
ms

k+1 − Fmk
)
,

Ps
k = Pk + Gk

(
Ps

k+1 − P−k+1

)
GT

k .

(22)

In the EM algorithm, the expectation is over the smoothing distribution (see Eq. (24))313

and the obtained smoother result is used by the EM algorithm.314
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4.2. Expectation-Maximization-Based Parameter Estimation315

Likelihood-based parameter estimation approaches seek to estimate the unknown
model parameters Θ from the marginal likelihood p(y1:K | Θ). In general, these methods
maximize the logarithm of p(y1:K | Θ) to find the maximum likelihood (ML) estimate of
Θ, given by

Θ = arg max
Θ

[log p(y1:K | Θ)]. (23)

The likelihood is over the joint density of the measurements and the latent state vari-316

ables. Since computation of the high-dimensional integral required in marginalizing317

the states out is practically impossible, in this paper, we use the EM for approximating318

ML estimation. The key idea behind the EM algorithm is that the marginal likelihood319

can be maximized by iteratively maximizing its lower bound, which is equivalent to320

maximizing [35]321

Q(Θ, Θ(i)) = E{log p(x0:K, y1:K | Θ) | y1:K}, (24)

where the expectation is with respect to p(x0:K | y1:K, Θ(i)) and Θ(i) denotes the param-322

eter estimate at iteration i. The expectation step of the EM algorithm is equivalent to323

computing (24) over the smoothing distribution, whereas the maximization step aims at324

maximizing Q(Θ, Θ(i)) with respect to Θ.325

Using the properties of the state-space model and noting that the parameters only
enter the measurement likelihood, maximizing Q is equivalent to maximizing (see,
e.g., [35,37])

Q̃(Θ, Θ(i)) =
K

∑
k=1

E{log p(yk | xk, Θ) | y1:K}. (25)

Furthermore, for the DFLT problem considered in this paper and under the assumption
that the measurement noises of the individual links are mutually independent, zero-
mean Gaussian noise, rl,k ∼ N (0, σ2

l ) and Cov{rl , rj} = 0, ∀ l 6= j, the parameters
can be estimated independently for each of the L links as follows. First, recall that the
measurement model of the lth link is given by

yl,k =
[
1 e−∆l,k/λ

][µl
φl

]
+ rl,k

= hl(xk)θl + rl,k.
(26)

Then, it is shown in Appendix A that the M-step maximizing the approximation of
Q̃(Θ, Θ(i)) in (25) has a closed form solution and the parameter update is given by

θ̂l = G−1B,

σ̂2
l = 1

K

(
D− BTG−1B

)
,

(27)

where K is the number of measurements of link l, and B, D and G are calculated using
the latest smoother results as follows

B =
K

∑
k=1

E{hl(xk) | y1:K}Tyl,k,

D =
K

∑
k=1

yTl,kyl,k,

G =
K

∑
k=1

E
{

hl(xk)
Thl(xk) | y1:K

}T
.

(28)
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(a) Open environment (b) Apartment

Figure 5. The experimental layouts in which the nodes ( ) and the reference positions ( ) are
illustrated.

The expectations used to calculate B and G involve nonlinear transformations of xk
which can be approximated using Taylor series expansion. This yields

E{hl(xk) | y1:K}≈hl(m
s
k),

E
{

hl(xk)
Thl(xk) | y1:K

}
≈hl(m

s
k)

Thl(m
s
k)+HT

x Ps
kHx,

(29)

where ms
k and Ps

k are the mean and covariance of the smoother result and Hx is the326

Jacobian of hl evaluated at ms
k (see Eq. (16)). For a more detailed treatment of EM-based327

parameter estimation please refer to, for example, [35–37].328

Due to quantization of the RSS, the estimated variance may be zero even though
the true real-valued received power would have had a positive variance. We apply
shrinkage, which imposes an L2-penalty on the estimated covariance matrix, to assure
positive variance and avoid numerical instability. In practice, the L2-penalized ML
estimate is given by the simple convex transformation:

R = (1− α)R̂ + α
Tr R̂

L
IL, (30)

where R̂ = diag
(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

L
)
, α is the shrinkage coefficient, Tr R̂ denotes the trace of329

the matrix and IL is an identity matrix.330

5. Experiments331

The development efforts of this paper are demonstrated using Texas Instruments332

CC2531 USB dongle nodes [44]. The nodes operate on the 2.4 GHz ISM band and com-333

municate on a set of frequency channels C ∈ {11, . . . , 26} defined by the IEEE 802.15.4334

standard [45]. The wireless nodes follow a round-robin schedule as discussed in Section335

3.1.2. In the transmitted packets, the nodes include the most recent RSS measurements,336

associated with the transmissions of other nodes. The time interval between the commu-337

nications is approximately, τ ≈ 2.9 ms, defining the sampling period for the system. A338

base station that overhears all the traffic extracts the RSS from the packets and relays the339

measurements to a computer through UART for centralized processing. The readers are340

referred to [46] for a detailed description of the communication protocol. It is to be noted341

that the method of this paper can be generalized to any device capable of measuring the342

RSS including Wi-Fi, Bluetooth and RFID.343

The experiments are conducted in an open indoor environment and in a downtown344

residential apartment. In both experiments, 20 nodes are deployed as illustrated in Fig.345

5. In the open environment, the nodes are set on top of podiums (≈ 0.9 m) and deployed346
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Table 1: Imaging parameters

Parameter
Pixel Variance (9) σ2

b 0.0005 (dB2)
Correlation distance (9) δd 0.5 (m)
Spatial decay rate (10) λ 0.04 (m)
Pixel width (7) δp 0.25 (m)
Image threshold (12) γ 0.70

around a 75 m2 area. The size of the apartment is 82 m2 and the nodes are deployed by347

the electric sockets so they could be powered from the mains. The walk-in closets did not348

have electric sockets on the exterior walls, so we decided to deploy one battery-powered349

node in each to ensure coverage of the entire apartment. These two nodes are located at350

[0.08 2.89]T and [10.24 2.80]T.351

Before the experiment, reference positions were defined and marked. During the352

experiment, the person’s trajectory follows the imaginary lines between the markers.353

Once the target reaches a reference position, they stop, remain stationary for a few354

seconds, and then walk to the next reference position. During the experiment, the355

person is carrying a video camera. In post-processing, the RSS and video streams are356

synchronized and the video is used to define the ground truth trajectory. In Section357

6.4, the statistical significance of the tracking error is tested to assure that the generated358

trajectory is close to the ground truth.359

The experiments in both environments are conducted with one, four and sixteen360

frequency channels and the set of used channels are: C = {26}, C = {11, 16, 21, 26} and361

C = {11, . . . , 26}. In addition, three different trials are conducted with each channel362

number. The trials are approximately three minutes long and every reference position is363

visited at least once in each trial. In the following section, the experiments are referred364

to as Exi.j., where i indicates the experiment number and j the trial. Experiments365

1− 3 are conducted in the open environment and experiments 4− 6 in the apartment.366

Furthermore, Ex1 and Ex4 use one channel, Ex2 and Ex5 four channels, and Ex3 and Ex6367

all sixteen frequency channels. In the apartment experiment, there are several co-existing368

Wi-Fi networks located in the coverage area but the presented system is able to remain369

operational. The system is not particularly sensitive to occasional packet drops and370

frequency channel diversity partly mitigates interference issues. As an example, the371

packet reception rate is below 85% on the most congested channel and above 99% on372

channels that do not share the frequency band with Wi-Fi.373

The imaging parameters used in the experiments are given in Table 1, whereas374

the parameters of the tracking algorithm are defined by the measurement model Θ =375

[µ, φ, λ, σ2]. In the experiments, λ = 0.04 m is assumed to be constant unless oth-376

erwise stated, the measurement gain and variance are initialized using φ0 = −5 dB377

and σ2
0 = 1 dB2. In Section 6, the initialization of µ0 is discussed. The only user-378

defined parameter in the EKF is the process noise value and it should be tuned to the379

actual motion. In this paper, q = 0.01 m2/s3 which corresponds to an acceleration of380

a ≈ 1.8 m/s2 for the considered system. The tracking filter is initialized when the person381

has reached the first reference position and is stationary. The filter is initialized using382

m0 =
[
x0 (m) 0 (m/s) y0 (m) 0 (m/s)

]T, where x0 and y0 are the center coordinates383

of the monitored area and P0 = I4. To note, the ground truth position is never at384 [
x0 y0

]T when the filter is initialized. Occupancy assessment is an important problem385

in DFLT [31] but for simplicity, we assume we know the time instances when the person386

enters and exits the monitored area.387
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The filters are evaluated using the root-mean-square error (RMSE) which is defined
as RMSE =

√
MSE. The mean-squared error (MSE) is

MSE =
1
K

K

∑
k=1
‖pk − p̂k‖2

2, (31)

where K ≈ 62000 is the total number of estimates in one trial, pk denotes the ground388

truth position, the hat accent indicates the estimate and ‖·‖2
2 the square of the Euclidean389

norm.390

6. Experimental Results391

The development efforts of this paper are experimentally validated in the following392

and benchmarked against existing solutions from literature. For now, µ0 is calculated393

using a two minute empty-room calibration period. From Section 6.3 onward, µ0 is394

initialized without an empty room calibration period.395

6.1. EM with existing DFLT methods396

In this section, it is shown that the EM algorithm can be used to enhance not only the397

performance of the proposed system, but also two de facto DFLT methods from literature.398

The first is RTI. The target is positioned as presented in Section 3.2, a standard Kalman399

filter (KF) is used for tracking and the RTSS is used for smoothing. The second method400

is a particle filter (PF). The implemented PF is a sequential importance resampling401

(SIR) filter with 1000 particles. The state estimate and covariance are calculated from402

the filtering distribution which is approximated by the set of particles and associated403

weights. A particle smoother could be implemented for approximating the smoothing404

distributions but for simplicity, the RTSS presented in Section 4.1 is used instead. A405

re-initialization procedure is required by the PF, because it is prone to diverge when406

the measurement model is inaccurate [3]. The PF is re-initialized, if the position error is407

larger than two meters, by drawing new particles from a uniform distribution within408

the monitored area and with zero velocity.409

In Fig. 6, RMSE of the different filters as a function of EM iteration number. As410

shown, the tracking performance is satisfactory with the initial parameter estimates (EM411

iteration 0) and all filters have an RMSE above one meter. It is to be noted that most DFLT412

systems are implemented similarly, that is, an empty-room calibration period is used to413

estimate µ0 and an educated guess is used for the other parameters. The empty-room414

data cannot be used to estimate the other parameters since they depend on the location415

of the person. However, they can be estimated using the state estimates after the person416

has entered the monitored area and moves around. In this paper, the EM algorithm417

based on Gaussian smoothing is used and with better parameter estimates, the tracking418

accuracy can be improved as we demonstrate in the following.419

After the filtering recursion, the RTSS recursion starts from the last time step and420

proceeds backwards to the first time step. Thereafter, the E-step of the EM algorithm421

can be approximated using the smoothing distribution and the parameter estimates422

are obtained from the M-step in closed form. Using the new parameter estimates, the423

filtering recursion is started from the beginning. This iterative process improves the424

model parameter estimates and results in enhanced tracking accuracy. As shown in Fig.425

6, the RMSE decreases by 46− 67%, depending on the filter. The results demonstrate426

that the implemented smoother and EM algorithm can also be used with other DFLT427

methods and it is an effective method to improve system performance.428
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Figure 6. The RMSE, averaged over the 18 different experiments, as a function of EM iteration
number. The DFLT methods are: EKF ( ), RTI ( ) and PF ( ).

6.2. Parameter Estimation Algorithms429

In this section, the EM algorithm is compared to the nonlinear least squares (NLS)
approach proposed in [21]. The parameter estimates are obtained by minimizing the
cost function

J(Θ) =
K

∑
k=1

(yl,k − hl(m
s
k, Θ))2, (32)

where hl(ms
k, Θ) = µl +φl exp(∆l,k/λl) is the nonlinear exponential model and λl is now430

a parameter to be estimated. In this paper, a nonlinear least-squares solver based on the431

interior-reflective Newton method described in [47] is used to find the minimum of J(Θ)432

and thereafter, the ML estimate of σ2
l is computed. The NLS approach provides freedom433

in the set of parameters that are estimated. In the following, we evaluate the NLS434

approach that estimates the following parameters Θ{j}: i.) Θ{1} = [µ, φ, σ2], as proposed435

in this paper; ii.) Θ{2} = [µ, φ, λ], as proposed in [21]; and iii.) Θ{3} = [µ, φ, λ, σ2], a436

system that estimates all measurement model parameters. The results are compared to437

the EM algorithm that estimates Θ{1}. We denote the parameter estimation algorithm438

and set of parameters simply as NLS(Θ{j}).439

The RMSEs are illustrated in Fig. 7 and the results imply that estimating Θ{1} yields
the highest tracking accuracy whereas estimating Θ{2} the lowest. To examine this
difference more closely, we concentrate on Ex3 and the NLS and calculate the average
R2 statistic, defined as

R2 =
L

∑
l=1

(
1− ∑K

k=1
(
yl,k − hl(ms

k, Θ)
)2

∑K
k=1(yl,k − ȳl)

2

)
· 100% (33)

and ȳl =
1
K ∑K

k=1 yl,k. The R2 statistic measures how much of the observed variation440

in the mean can be explained by the model. For the two cases, R2 = 17.0% and R2 =441

19.1% for NLS(Θ{1}) and NLS(Θ{2}) in corresponding order, meaning that estimating442

Θ{2} explains the mean of the data more accurately, but the difference is only 2.1%.443

Calculating the Kullback-Leibler Divergence (KLD) yields 0.04 and 0.52 for Θ{1} and444

Θ{2} in respective order. As the KLD indicates, Θ{2} is unable to account for the noise445

in the data and improved estimators can be developed when better noise models are446

available. Thus, estimating σ2 rather than λ has a significantly higher impact on tracking447

accuracy. It is to be noted that EKF(Θ{1}) and NLS(Θ{1}) yield comparative performance448

and small differences are expected, for example, due to the termination rule of the449

optimization method. Interestingly, NLS(Θ{3}) has a higher RMSE than NLS(Θ{1}). This450
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Figure 7. Comparison of different parameter estimation algorithms as a function of iteration
number: EM(Θ{1})( ), NLS(Θ{1})( ), NLS(Θ{2})( ) and NLS(Θ{3})( ).

Table 2: DFLT system comparison: RMSE ± standard deviation of the estimation error
in centimeters

EKF ARTI
Ex1 (open) 31.3± 18.7 62.8± 46.8
Ex2 (open) 20.8± 11.4 26.0± 15.0
Ex3 (open) 17.2± 8.9 23.8± 11.5
Ex4 (apt.) 50.4± 28.0 85.1± 62.0
Ex5 (apt.) 40.1± 20.9 62.9± 41.3
Ex6 (apt.) 36.7± 21.1 49.6± 28.4

is either caused by over fitting the model or then the optimization algorithm converges451

to a local minima. In the measurement model, φ and λ are coupled and the optimization452

algorithm must solve for these simultaneously which can be problematic.453

The main benefit of the proposed EM algorithm is that it can be solved in closed form454

using simple arithmetic operations, whereas the NLS approach requires a solver for the455

nonlinear optimization problem. In practice, the estimates only require computing two456

vector products (B and D) with complexity O(K2), and calculating G with complexity457

O(K2 + n3K), where n is the state dimension and K the number of measurements. As an458

example, for three minutes of experimental data and using the initial parameter estimates,459

the computation time of the parameter estimation algorithms in experiment Ex3 are:460

[1.66, 15.56, 29.15, 30.99] seconds for EM(Θ{1}), NLS(Θ{1}), NLS(Θ{2}) and NLS(Θ{3})461

in respective order. The results are obtained using a Matlab implementation and a462

computer equipped with a 2.60 GHz Intel Core i7-8850H processor and 32 GB of RAM.463

As demonstrated by the results, the EM algorithm is computationally very efficient,464

up to 18 times faster than NLS. It is to be noted that the computation time of NLS465

has a significant dependence on the parameter values that are used to initialize the466

optimization algorithm. For example, the computation time of NLS(Θ{3}) is 13.80 s467

during the last parameter estimation iteration. Also the link number has an impact since468

it defines the number of times NLS is called. As an example, the computation time in469

Ex1.1. and NLS(Θ{3}) is 3.12 s, which is significantly shorter than in Ex3.1. because the470

experiment only uses one frequency channel.471

6.3. System Comparison472

In this section, the proposed system is benchmarked against an adaptive radio473

tomographic imaging (ARTI) system [21]. ARTI is an imaging method that estimates µ474

and φ online, smoothing is used to enhance the image and state estimates, and NLS is475

used for estimating φ and λ. In the experiments, both systems are initialized without476
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Figure 8. Tracking accuracy of the system in Ex6.3. In the figure, the ground truth coordinates’
are shown using ( ), the estimated with ( ) and the pink area illustrates the 3σ confidence
interval of RTI position estimates.

Table 3: RMSE in centimeters of the proposed system in the different experiments and
trials.

Trial 1 Trial 2 Trial 3 Average
Ex1 (open) 23.4 25.1 28.2 25.6
Ex2 (open) 21.7 16.8 19.2 19.2
Ex3 (open) 18.3 16.3 16.9 17.2
Ex4 (apt.) 57.9 54.9 49.3 54.0
Ex5 (apt.) 42.8 41.5 39.7 41.3
Ex6 (apt.) 39.2 42.7 39.0 40.3

any prior information of the RSS, model parameters or location of the person. ARTI has477

an online calibration unit to estimate the reference RSS and the system is functional from478

the very beginning. The proposed system does not have such a feature and we use the479

online calibration unit of ARTI to estimate µ during the first filtering recursion and then480

the unit is disabled during the subsequent iterations. It is to be noted that µ could be481

initialized in various ways, but for matter of fairness we use the same method as ARTI482

uses.483

The results are summarized in Table 2 and for each experiment, the results are484

averaged over the three trials. As shown, the proposed algorithm results in superior485

performance, an average decrease of 42% in the RMSE with respect to ARTI. For ARTI486

the estimates are most of the time accurate, but in certain positions, the location estimate487

is widely off (the skewness is 5 and kurtosis is 37 indicating that the distribution has488

a positive skew and it is heavy tailed). The main reason for the large position errors489

is that a link can measure a really large RSS change when the person is not on the490

link line, the straight imaginary line between the TX and RX. When using imaging491

methods, this one link will dominate over the other links and the person will be localized492

in between the wrong TX-RX pair. The proposed system is not as vulnerable to such493

outliers (skewness is 2 and kurtosis is 10) because of the implemented measurement494

selection logic which discards RTI position estimates with abnormally large errors. The495

performance difference between ARTI and EKF can also be explained with the set of496

parameters that are estimated by the systems. ARTI estimates Θ{2} = [µ, φ, λ] and this497

limits the achievable accuracy of the system as discussed in the previous section. To498

support this claim, in Fig. 6 it is shown that an RTI solution together with EM almost499

achieves the same accuracy as the proposed solution.500

6.4. System Performance Over Time501

Next, we demonstrate that the proposed system can maintain its high accuracy over502

time. The conducted trials are actually snippets from a longer experiment. The entire503

experiment contains the three trials explained before and a five-minute period when504
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Table 4: RMSE of parameter estimates

µ̂ [dB] φ̂ [dB] λ̂ [m] σ̂2 [dB2]
EKF 0.1705 1.3688 0.0433 0.6324
ARTI 0.6623 2.5230 0.0365 4.1551

the person randomly walks inside the monitored area. In between the occupancy time505

periods, the person leaves the area for two minutes at a time. The five-minute period506

takes place before the trials, and we will run ten iterations of the EM algorithm using507

data from this period. Then, the obtained parameter estimates are used the next time508

the person enters the area. After each trial, the EM algorithm is used once to recalculate509

the model parameter estimates. The results are summarized in Table 3 and in every510

experiment, the tracking accuracy remains high throughout the different trials and there511

is no indication that the RMSE increases. This implies that the proposed system is512

suitable for estimating the model parameters without requiring human intervention and513

for maintaining high tracking accuracy over time. The ground truth trajectory together514

with the coordinate estimates is illustrated in Fig. 8 for Ex6.3. Note that the covariance of515

RTI position estimates changes from frame to frame and, therefore, the pink area which516

illustrates the 3σ confidence interval is not constant.517

The described procedure is one of the possibilities how the proposed system would518

be used in practice, that is, the parameters would be estimated at regular intervals or519

once the person has covered enough distance. However, there is a downside to the EM520

algorithm. It does not account for prior information and it computes the ML estimates of521

the parameters from the data that is used as input. As an example, the data from the five-522

minute period is forgotten when the parameters are re-estimated after the first trial. This523

is an issue that must be solved for systems that are deployed over an extended period of524

time. One alternative is to compute the maximum a posteriori (MAP) estimates which525

can be done in practice by maximizing Q(Θ, Θ(i)) + log p(Θ) at the M-step instead526

of the plain Q(Θ, Θ(i)) [35, Ch.12]. The prior information is included in to the MAP527

estimate via the additional term log p(Θ).528

The ground truth trajectory is reconstructed from the video recording. When529

the person is stationary, the ground truth locations are accurate because the reference530

positions were measured precisely with a laser rangefinder and it is easy to extract these531

time instances from the video. When the person is moving, the ground truth can contain532

small errors because the video and measurements cannot be perfectly synchronized.533

Furthermore, the person does not move exactly with constant velocity. Let us assume534

that the ground truth trajectory is reconstructed accurately and let the null hypothesis535

be that the RMSE is the same when the person is stationary and moving. Then, we can536

test the statistical significance of the result to determine whether the null hypothesis537

should be rejected or retained. The RMSE is 32.8 cm when the person is standing still538

and 33.0 cm when moving. The t-test statistic of the independent two-sample t-test539

equals 0.0465 and the critical value is 2.03 with a 5% significance level. Since the statistic540

is lower than the critical value, the null hypothesis remains valid and the RMSE for541

stationary and moving periods can be considered the same. The result indicates that the542

ground truth trajectory has been accurately reconstructed.543

6.5. Simulations544

Lastly, we want to validate the development efforts of this paper numerically using545

simulations. Thus, the performance of the proposed system and ARTI are numerically546

analyzed using a simulation scenario which replicates Experiment 3. In total, 100547

Monte Carlo simulations are performed and for each run, the model parameters are548

randomly drawn. The model parameters used in the simulation are drawn from: a549

Gaussian distribution, µ ∼ N (−62.80, 7.50), non-standardized Student’s t-distribution550

φ ∼ T (−2.14, 3.60, 4.59), a uniform distribution λ ∼ U (0.01, 0.13) and a log-normal551
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Figure 9. The posterior Cramér-Rao bound ( ) and RMSE of the proposed system ( ) and
the benchmark system ( ). For every iteration number, the results are averaged over 100 Monte
Carlo simulations.

distribution σ2 ∼ L(0.79, 0.88). The exact distributions of the model parameters are552

unknown but the used ones provide a functional fit and they resemble the empirical553

distributions obtained using data from the open environment experiments. In the554

following, the RMSE is evaluated with respect to the posterior Cramér-Rao bound555

(PCRB) of RSS-based DFLT [3]. In addition, the RMSE of the parameter estimates are556

examined.557

In Fig. 9, RMSE of the two systems as a function of parameter estimation iteration558

number is illustrated. With the initial parameter estimates, see iteration number zero559

in Fig. 9, ARTI achieves a lower RMSE because µ and φ are estimated online during560

the filtering recursion. However, the proposed system outperforms ARTI after the561

parameters have been estimated by the EM and NLS algorithms. As illustrated in the562

figure, the EKF converges much closer to the PCRB than ARTI. More quantitatively,563

at iteration number five, the PCRB is 3.7 cm whereas the RMSE of the EKF and ARTI564

are 7.1 cm and 16.7 cm in respective order, a 57% decrease in tracking error in favor565

of the EKF. The EKF achieves higher tracking accuracy due to two reasons. First, the566

EKF-based tracking algorithm is more accurate than the KF-based tracking algorithm of567

ARTI. With improved tracking performance the parameter estimates are more accurate568

which improves the tracking performance even further. As shown in Table 4, the RMSE569

of the parameter estimates for the EKF are significantly lower for µ, φ and σ2. The second570

reason is that an accurate estimate of σ2 rather than λ has a significantly higher impact571

on tracking accuracy as discussed in Section 6.2. As tabulated in Table 4, the RMSE of λ572

for ARTI and the EKF are 0.0365 m and 0.0433 m in respective order, only a 19% increase573

in RMSE when it is not estimated by the proposed system. Respectively, the RMSE of574

σ2 decreases by 85% when estimated by the EM algorithm and as a result, improved575

estimators can be developed when better noise models are available.576

7. Conclusions577

The work in this paper addresses three fundamental challenges in DFLT. First,578

having an accurate model of the RSS as a function of target and transceiver positions.579

Second, estimating the parameters of the model without requiring calibration or super-580

vised training. Third, maintaining that model over time without requiring recalibration581

of the system. These problems are tackled by developing a system for estimating the582

RSS model parameters and the target’s arbitrary trajectory. In the paper, the model583

parameters are estimated using an EM algorithm based on Gaussian smoothing and a584

novel localization and tracking system is presented to fully utilize the EM algorithm’s585

potential. The system is validated using eighteen different measurement data sets from586
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two different environments. The results suggest that high tracking accuracy can be587

achieved without using calibration data. With respect to another adaptive DFLT system,588

it is demonstrated that the proposed system reduces the RMSE by 42%, while the pa-589

rameter estimation algorithm is up to 18 times faster to compute. The developments of590

this paper streamline the deployment and maintenance needs of DFLT systems without591

sacrificing accuracy.592

Appendix A EM Algorithm593

The parameter updates (27) for the linear-in-parameters measurement model (26)
are derived in the following. In state-space models, Q(Θ, Θ(i)) can be decomposed
to [35–37]

Q(Θ, Θ(i)) =
K

∑
k=1

E{log p(yk | xk, Θ) | y1:K}

+
K

∑
k=1

E{log p(xk | xk−1, Θ) | y1:K}

+E{log p(x0 | Θ) | y1:K},

(A1)

by making use of the Markov property of the state sequence and conditional indepen-
dence of the measurements. Noting that in DFLT, the dynamic model p(xk | xk−1) and
initial distribution p(x0) are independent of the unknown parameters, maximizing (A1)
is equivalent to maximizing the first term only, that is, maximizing (25). To simplify
the notation, the dependence of hl,k on xk is not explicitly stated in the following. The
log-likelihood of the first term is

log p(yk | xk, Θ) =
L

∑
l=1

logN (yl,k | hl,kθl , σ2
l )

=
L

∑
l=1

(
− 1

2 log(2π)− 1
2 log(σ2

l )− 1
2σ2

l
‖yl,k − hl,kθl‖2

)
,

and taking the derivatives with respect to θl and σ2
l yields

∇θl log p(yk | xk, Θ) = 1
σ2

l
hT

l,k(yl,k − hl,kθl),

∇σ2
l

log p(yk | xk, Θ) = − 1
2σ2

l
+ 1

2σ4
l
‖yl,k − hl,kθl‖2.

In order to estimate the parameters, (25) is approximated using the smoothing
distribution provided by the Gaussian smoother in Section 4.1 and given by

p(xk | y1:K, Θ(i)) ≈ N (xk; ms
k, Ps

k). (A2)

The maximization step is computed by setting the gradient with respect to θl to zero,
that is

∇θlQ(Θ, Θ(i)) =
K

∑
k=1

E
{
∇θl log p(yk | xk, Θ) | y1:K

}

≈
K

∑
k=1

1
σ2

l
E
{

hT
l,kyl,k − hT

l,khl,kθl | y1:K

}
= 0.

(A3)

Using the notation in (28) and solving (A3) for θl yields

θ̂l = G−1B. (A4)
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Similarly, for σ2
l we get

∇σ2
l
Q(Θ, Θ(i)) =

K

∑
k=1

E
{
∇σ2

l
log p(yk | xk, Θ) | y1:K

}

≈ −K
2σ2

l
+ 1

2σ4
l

(
K

∑
k=1

yTl,kyl,k − 2

[
K

∑
k=1

yTl,kE
{

hl,k | y1:K
}
]

θl

+ θTl

[
K

∑
k=1

E
{

hT
l,khl,k | y1:K

}]
θl

)
= 0.

(A5)

Using the notation in (28), substituting θl to (A5) and solving for σ2
l yields

σ̂2
l = 1

K

(
D− BTG−1B

)
. (A6)

Finally, note that the optimal θ̂l does not depend on σ̂2
l so that they can be sequentially594

optimized by first solving for θ̂l and then substituting the value into the estimate of σ̂2
l .595
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