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A Novel Bayesian Filter for RSS-based
Device-free Localization and Tracking

Ossi Kaltiokallio, Roland Hostettler and Neal Patwari

Abstract—Received signal strength based device-free localization applications utilize a model that relates the measurements to
position of the wireless sensors and person, and the underlying inverse problem is solved either using an imaging method or a
nonlinear Bayesian filter. In this paper, it is shown that Bayesian filters nearly reach the posterior Cramér-Rao bound and they are
superior with respect to imaging approaches in terms of localization accuracy because the measurements are directly related to
position of the person. However, Bayesian filters are known to suffer from divergence issues and in this paper, the problem is
addressed by introducing a novel Bayesian filter. The developed filter augments the measurement model of a Bayesian filter with
position estimates from an imaging approach. This bounds the filter’s measurement residuals by the position errors of the imaging
approach and as an outcome, the developed filter has robustness of an imaging method and tracking accuracy of a Bayesian filter. The
filter is demonstrated to achieve a localization error of 0.11 m in a 75 m2 open indoor deployment and an error of 0.29 m in a 82 m2

apartment experiment, decreasing the localization error by 30− 48 % with respect to a state-of-the-art imaging method.

Index Terms—Received signal strength, wireless sensor networks, Bayesian filtering, posterior Cramér-Rao bound, positioning and
tracking
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1 INTRODUCTION

U BIQUITOUS radio frequency (RF) sensing technologies
have experienced a surge of interest over the past

years and are considered as a potential candidate to be used
in smart homes. Smart homes control heating, ventilation
and air conditioning systems to improve environmental
sustainability and the comfort of their residents [1]. Our
vision is that future smart homes would not only monitor
the homes we live in, but also its inhabitants. Such system
capabilities are enabled by RF signals and recently, various
radio signal measurements have been demonstrated for vital
sign monitoring [2], activity and gesture recognition [3],
and localization and tracking [4]. With such information,
the smart home could be controlled using our gestures, the
vital sign information could be used to enhance our health-
awareness, and heating and lighting could be automatically
adjusted based on our location.

Non-invasive RF sensing technologies are built upon the
fact that humans alter the propagation characteristics of
radio signals and at the receiver, these changes can be quan-
tified using the radio’s channel measurements. Research has
demonstrated the use of various radio signal measurements
for inference, including time delay [2], phase [3], and signal
strength [4]; and these have been used for various purposes
as mentioned above. Most notably, the technology is non-
invasive and does not require the person to carry any
electronic device. Moreover, the technology can be realized
with received signal strength (RSS) measurements that are

• Ossi Kaltiokallio is with the Department of Communications
and Networking, Aalto University, Espoo, Finland. E-mail:
ossi.kaltiokallio@aalto.fi

• Roland Hostettler is with the Department of Engineering Sciences, Upp-
sala University, Sweden. E-mail: roland.hostettler@angstrom.uu.se

• Neal Patwari is with the McKelvey School of Engineering, Washington
University in St. Louis, and Xandem Technology LLC, Salt Lake City,
United States. E-mail: npatwari@wustl.edu

ubiquitously available in nearly all receivers. In this paper,
we consider narrowband wireless devices that measure the
RSS and we utilize the channel measurements for locating
and tracking people in indoor environments. It is to be noted
that the technology is not limited to localizing people and
the proposed method could also be used to locate large
animals [5] and vehicles [6]. The readers are referred to
[7], [8] for a comprehensive overview of RF-based passive
localization technologies.

In RSS-based device-free localization and tracking
(DFLT), the algorithmic approaches can be divided into
two categories. In the first, the person is located using an
imaging approach [9], [10] and a Kalman filter (KF) is used
for tracking [11], [12]. In the second, a propagation model
together with a nonlinear Bayesian filter such as a particle
filter (PF) [13], [14], [15] or an extended Kalman filter (EKF)
[16] is used to track the kinematic state of the target. The
considered problem can be solved more accurately using a
nonlinear Bayesian filter, however, these filters are known
to suffer from divergence issues if the modeling errors are
significant [17, p.128]. To address this problem, we introduce
a novel Bayesian filter in which the measurement update
recursion is augmented with position estimates from an
imaging approach. The benefit of the proposed approach is
that the filter’s measurement residuals are bounded by the
position errors of the imaging approach, and as a result, the
filter has the robustness of an imaging method and almost
the tracking accuracy of a nonlinear Bayesian filter. More-
over, the implemented filter is computationally efficient. We
refer to the developed Bayesian filter as Fusion Filter (FF)
and it practically merges an EKF approach with an imaging
approach.

The work is motivated by deriving the posterior Cramér-
Rao bound (PCRB) for the RSS-based DFLT problem and
evaluating two estimators with respect to the bound. The
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TABLE 1: Major notations and common operators

Symbol Description

zl, zk and Z A scalar RSS measurement of link l, RSS measurement vector at time k and RSS matrix

xk , x̂k , Pk State of the person at time k, estimate of the state and covariance of the estimate

hl, Hx and H Measurement model of link l, Jacobian of hl(xk) and linear measurement model

∆l(k) and θl = [φl λl σ
2
l ] Excess path length of link l at time k and model parameters of the link

(·)T , (·)−1 and ‖·‖ matrix transpose, inverse and Euclidean norm

used RSS-based DFLT estimators are: an EKF-based method
[16] and a modified radio tomographic imaging (RTI)
method [12]. The analysis clearly shows that RTI is lower
bounded by the pixel size of the discretized image and this
bound is significantly higher than the PCRB. On the other
hand, the EKF nearly achieves the bound which encourages
its use in RSS-based DFLT. However, the divergence issues
of the EKF must be solved and we propose to use the FF for
this purpose. The filter is experimentally and numerically
evaluated. The results imply that the presented filter nearly
achieves the performance of the EKF in ideal scenarios, it
outperforms the EKF and PF in more challenging environ-
ments and it has the robustness of an imaging method. The
presented filter is demonstrated to achieve a localization
error as low as 11 centimeters in a 75 m2 open indoor
deployment and an error of 29 centimeters in a 82 m2

apartment experiment, decreasing the localization error by
30−48 % with respect to a state-of-the-art imaging method.

In RF sensing, sensor fusion is the inherent way of com-
bining the information from multiple sources (distributed
sensor nodes [9], [18], antennas [2], [3] and/or frequency
channel [12], [19]). Several works have also used differ-
ent types of sensors including ultra-wideband radios [20],
cameras [21], [22], [23] and acoustic sensors [24] to enhance
the performance of a system that solely uses radio channel
measurements. The works perform sensor fusion by com-
bining the sensory data from two kinds of sensors to reduce
the uncertainty and improve the accuracy. Our solution
differs from traditional sensor fusion methods since we do
not combine different types of sensory data but instead,
we merge the information from two categories of DFLT
approaches into one filtering algorithm.

This paper makes the following contributions:
• A closed form solution for the PCRB is derived and two

well known estimators are evaluated with respect to the
bound.

• A sequential imaging method is proposed allowing
recursive image updates whenever new RSS measure-
ments are received.

• We propose a method on how the uncertainties related
to RTI position estimates can be taken into account.

• A novel filtering framework is proposed that aug-
ments the measurement update recursion of a nonlinear
Bayesian filter with position estimates from an imaging
solution.

The remainder of the paper is organized as follows. In
the next section, related work is discussed. In Section 3,
the problem of tracking the kinematic state of the person
is formulated and two estimators are presented. The PCRB
is derived in Section 4 and the bounds of RSS-based DFLT

are analyzed. Motivated by the bound analysis, the FF is
developed and the filter is presented in Section 5. The
experiments and results are presented in Sections 6 and 7 in
respective order and thereafter, the conclusions are drawn.
In Table 1, major notations of the paper are summarized.

2 RELATED WORK

In RSS-based DFLT, there are two widely used approaches
for locating people: fingerprinting [25], [26], [27], and
model-based approaches [9], [12], [14]. Fingerprinting meth-
ods use a database of training data labelled with a person’s
known locations. During runtime, the current set of RSS
measurements are compared to those in the database to
estimate the current location. Model-based approaches use
an a priori model for the changes in RSS with respect to
the locations of the sensors and person, and localization is
performed for example using an imaging approach [9], [10].
Fingerprinting methods are able to achieve high accuracy
also in demanding environments, but the training process
is laborious and the performance degrades exponentially
as the environment is altered [27]. Model-based approaches
can be deployed quickly [28], but the mismatch between
the RSS model and measurements can significantly affect
the system performance [12]. This paper focuses on model-
based DFLT and a novel tracking filter is presented, and it
is shown that the filter is robust to modeling errors.

In model-based approaches, the person is typically lo-
cated and tracked either using an imaging approach [9],
[10], [12] or Sequential Monte Carlo (SMC) methods [13],
[14], [15]. The imaging methods compute a propagation
field image of the monitored area [9], [10], the person is
localized from the estimated image, and then a KF is used
for estimating the kinematic state of the target [11], [12].
In literature, the changes in the propagation field have
been quantified using various RSS link metrics including
shadowing [9], RSS variance [11] and kernel distance be-
tween two RSS histograms [28]. The benefit of the imaging
approaches is that they are computationally efficient, they
are robust and an improper prior does not cause the tracking
filter to diverge. As a drawback, information can be lost in
the two-step process to first estimate the image and then the
location. In addition, discretization of the image inevitably
degrades the localization accuracy.

The SMC methods typically utilize a PF to solve the
problem, and in the tracking algorithms, the RSS measure-
ments are directly related to the person’s location using
either an empirical model [13], [15] or a theoretical propaga-
tion model [14], [29]. Different variants of the PF have been
proposed in literature including the sequential importance
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resampling (SIR) filter [13], [14], [15], auxiliary particle filter
[30] and Markov chain Monte Carlo filter [31]. However,
the filters have been reported to yield comparative accuracy
at least in the single target tracking case [31]. Furthermore,
our recent work demonstrates that an EKF yields similar
performance as a PF as long as the time evolution of the
measurements is taken correctly into account in the filter
recursion [16]. The benefit of the Bayesian filters is that
they are more accurate than the imaging approaches if the
used RSS-model describes the data well [13], [16], [29]. As
a disadvantage, the PF is computationally very demanding,
and the filters can diverge if the prior distribution is in-
accurate [16]. In this paper, we introduce a Bayesian filter
in which the measurement update recursion is augmented
with position estimates from an imaging approach in order
to improve robustness of the filter. The developed filter
is computationally less demanding than the PF, it has the
robustness of an imaging method and the tracking accuracy
of a Bayesian filter.

The PCRB states that the mean squared error (MSE)
of an unbiased estimator is always larger than the bound
[32], [33]. The PCRB can be used to evaluate the developed
estimator and in addition, as a pre-deployment predictor
of system performance, providing an analytical method for
system design and pre-deployment performance evaluation.
Despite the importance of the PCRB, there exists only a few
works in RSS-based DFLT that have used it for evaluation
purposes [10], [14], [29], [34], [35], [36]. In [10], the CRB
is derived for RTI and in the work, it is studied how the
node locations affect the accuracy of image estimation. It is
shown that the best node geometry is where the nodes are
deployed uniformly around the monitored area. The CRB
for five different RTI models is derived in [34] providing
an analytical tool on how the system parameters affect
the CRB, enabling analysis of the tradeoffs between the
parameters in system design. Neither analysis provides a
bound on position estimates − they can only bound the
covariance of the values of the pixels in the image. In this
paper, we derive the PCRB on localization error similar
to the works in [14], [29], [35], [36]. Contrary to [14], we
provide a closed-form solution to the PCRB. In addition, we
incorporate the apriori knowledge of the target dynamics
and position into the PCRB as opposed to the works in [29],
[35], [36]. In fact, the PF used in [29] outperforms the derived
bound and the authors point out that the conventional CRB
does not incorporate the apriori information of the motion.
Furthermore, the aforementioned works use a diffraction-
based RSS model which has been validated only in ideal
line-of-sight (LOS) scenarios limiting the usefulness of the
derived bounds. In this paper, we use an exponential model
[13] that is widely used in literature. In addition, the model
has been used in challenging through-wall scenarios [12]
and therefore, the derived PCRB can be applied to a wide
range of environments.

Radio source localization systems have been investigated
and deployed in a variety of forms over the past several
decades [37]. Source localization from signal-strength is
most relevant to this paper, and bounds and algorithms
have been presented [38]. Similarly, localization bounds
using temporal characteristics has been widely investigated
via geometric dilution of precision [39] or via CRB [40].

Bounds for systems that combine multiple signal character-
istics (time, power, and angle) are given in [41]. In general,
the RSS source localization variance bound is inversely pro-
portional to the average squared distance between neigh-
boring sensors. It also decreases with increasing path loss
exponent and increases with fading variance [42]. Respec-
tively, the RSS-based DFLT variance bound decreases with
increasing number of wireless links that cover the location.
It also decreases with increasing measurement gain and
increases with measurement noise variance.

3 RSS-BASED DFLT
This section presents the background information needed to
derive the PCRB for RSS-based DFLT in Section 4 and devel-
oping the novel Fusion filter in Section 5. This section begins
by defining the problem of localizing and tracking a person
using RSS measurements of wireless links. Thereafter, two
solutions from the literature are summarized [12], [16]. The
first solution is based on an EKF that directly relates the RSS
measurements to the person’s kinematic state [16]. The latter
is a two-step method, where a discretized propagation field
image is first computed and then, the person’s position is
estimated from the image [10], [12].

To simplify the notation, we assume in this section
that the wireless network consists of S nodes forming
L = S · (S−1) unique links and that the link measurements
are taken at the same time instance k. We want to emphasize
that full connectivity is not a requirement of RSS-based
DFLT and that the link measurements can be sampled at
different time instances. In Section 5, we present the used
communication protocol, how the RSS measurements are
sampled and how the time evolution between transmissions
is taken into account.

3.1 Problem Formulation
This work aims to localize and track a person using RSS
measurements of the wireless nodes. The considered prob-
lem can be formulated using a state space model of the form

xk = f (xk−1) + qk−1, (1a)
zk = h (xk) + rk, (1b)

where k denotes the time and

xk ∈ R4×1 is the person’s kinematic state,

zk ∈ RL×1 RSS measurement vector,
qk−1 ∼ N (0,Q) Gaussian process noise,

rk ∼ N (0,R) Gaussian measurement noise,
f(·) dynamic model of the person,
h(·) RSS measurement model.

The measurement noise covariance is assumed diagonal and
it is defined as R = diag

(
σ2

1 , σ
2
2 , . . . , σ

2
L

)
. In literature, the

DC component is typically removed from the RSS since it
does not contain information about location of the person
[10], [13], [14], [15]. Thus, what we refer as the RSS of link l
is actually the mean removed RSS, that is, zl(k) = z̃l(k)−µl,
where z̃l is the RSS provided by the radio module and µl is
the mean RSS computed during an initialization procedure.
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The state of the person is defined as

xk =
[
px(k) vx(k) py(k) vy(k)

]T (2)

where px(k) and py(k) are the x- and y-coordinates, and
the velocity components are denoted as vx(k) and vy(k).
A common choice for the dynamic model in DFLT is the
second-order kinematic model [11], [14], [15] given by [43,
Ch 6]

F =




1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1


, Q = q




1
3τ

3 1
2τ

2 0 0
1
2τ

2 τ 0 0
0 0 1

3τ
3 1

2τ
2

0 0 1
2τ

2 τ


, (3)

where q is the power spectral density of the process noise
and τ is the sampling period. In this case, the state evolution
in Eq. (1a) can be expressed using xk = Fxk−1 + qk−1

because the dynamic model is linear.

3.2 Extended Kalman Filter
The EKF algorithm directly relates the RSS measurements to
the person’s kinematic state and we model the RSS of link l
using the exponential model [13], [15], [31]

hl(xk) , φl e
−∆l(k)/λl , (4)

where φl defines the measurement gain when the person is
on the LOS and λl controls the decay rate. In this paper,
we use the exponential model because it has been widely
used in literature and its applicability has been demon-
strated in challenging indoor environments and through-
wall scenarios [12]. Nevertheless, the proposed filter can
readily be used used with other RSS models as well. In
(4), the excess path length ∆l relates the person’s location
pk =

[
px(k) py(k)

]T to link l with transmitter (TX) i and
receiver (RX) j by

∆l(k) , ‖pi − pk‖+ ‖pj − pk‖ − ‖pi − pj‖, (5)

where pi and pj denote the TX and RX positions in respec-
tive order. The EKF requires the Jacobian of hl(xk) for which
the elements are given by [16]
[
δhl

δpx
δhl

δpy

]T
=
hl(xk)

λl

(
pi − pk
‖pi − pk‖

+
pj − pk
‖pj − pk‖

)
, (6)

so that the Jacobian for link l can be expressed as

{Hx}l =
[
δhl

δpx
0 δhl

δpy
0
]
. (7)

Given that the dynamic model in (3) is linear, the pre-
diction step of the first order additive noise EKF can be
expressed as [17, Ch 4]

x̂−
k = Fx̂k−1,

P−
k = FPk−1F

T + Q.
(8)

At time k, measurement zk becomes available and the mean
x̂−
k and covariance P−

k can be updated using [17, Ch 5]

Sk = Hx(x̂−
k )P−

k HT
x (x̂−

k ) + R,

Kk = P−
k HT

x (x̂−
k )S−1

k ,

x̂k = x̂−
k + Kk

(
zk − h(x̂−

k )
)
,

Pk = P−
k −KkSkK

T
k .

(9)

3.3 Radio Tomographic Imaging
In RTI, the RSS for the L links is assumed to be a linear
combination of voxel changes plus noise [9]

zk = Abk + rk, (10)

where rk ∈ RL×1 is the measurement noise defined in
(1b), A ∈ RL×N is a weight matrix that relates the spatial
propagation field bk ∈ RN×1 to the RSS zk ∈ RL×1 andN is
the voxel number. The minimum mean square error estimate
(MMSE) for the model in (10), with zero-mean Gaussian
priors with image noise covariance Σb and measurement
noise covariance R is

b̂k = Πzk, (11)

where Π =
(
ATR−1A + αΣ−1

b

)−1
ATR−1 in which α is

a regularization parameter. From the estimated image, b̂,
the person can be localized by finding voxel n with highest
intensity, given by

p̂k ,
[
px(n)
py(n)

]
= arg max

n
b̂k(n). (12)

The covariance matrix Σb for pixels m and n is [9]

{Σb}m,n = exp (−‖pm − pn‖/δd) , (13)

where δd is a user defined space constant. For link l and
pixel n, the elements of A are [12]

{A}l,n =
sgn(φl)√

dl
e−∆l,n/λl , (14)

where φl and λl are defined by the RSS measurement model
in (4), sgn(·) is the sign function, ∆l,n the excess path length
and dl = ‖pi − pj‖ the distance between TX-RX pair i − j.
In [12], the direction of RSS change is taken into account by
weighting the measurements using sgn(φl)·zl. Analogously,
the sgn(φl) term can be included into the weight matrix as
we have done above. Also other models for A have been
proposed and the reader is referred to [34] and [44] for
further details.

4 POSTERIOR CRAMÉR-RAO BOUND

This section presents a new lower bound for coordinate
tracking in RSS-based DFLT. While the PCRB is a well-
established bound for tracking problems, in general, we are
not aware of its application to the RSS-based DFLT problem.
The earlier works have only bounded the covariance of the
values of the pixels in the image [10], [34], provided the CRB
on localization error [29], [35], [36] or have approximated
the bound numerically [14]. In the following, we provide a
closed-form solution to the PCRB for the tracking problem.

The CRB for a time-varying system, referred to as the
Van Trees version of the CRB [32], or posterior CRB [33],
states that the MSE of an unbiased estimator is always larger
than J−1:

E{(x̂(z)− x) (x̂(z)− x)
T } ≥ J−1, (15)

where J is the Fisher information matrix (FIM), x̂(z) denotes
an estimator of x which is a function of measurements z. The
FIM is defined as

J = E [−∆x
x log p(x, z)] , (16)
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Fig. 1: In (a), the RTI estimator mean ( ) and 3σ uncertainty ellipse ( ) using 1000 trials for 16 example locations
with respect to the true location ( ) and PCRB on the 3σ uncertainty ellipse ( ). In (b), the sum of link contributions
htot(pk) =

∑L
l=1 e

−∆l(k)/λl as a function of target coordinates pk. In (c), lower bound of localization standard deviation in
logarithmic scale, 10 log10 (epk/1 m), as a function of pk.

where p(x, z) is the joint probability density function (PDF)
of the pair and ∆y

x is defined as the gradient product ∆y
x =

∇x∇Ty , where ∇Tx =
[
∂
∂x1

, · · · , ∂
∂xN

]
. The joint PDF for an

arbitrary time instant k is defined as

p(xk, zk) = p(x0)
k∏

i=1

p(zi|xi)
k∏

j=1

p(xj |xj−1) (17)

and for a time-varying system, the FIM can be calculated
recursively using [45]

Jk = D22
k−1 −D21

k−1

(
Jk−1 + D11

k−1

)−1
D12
k−1, (18)

where

D11
k−1 = E{−∆xk−1

xk−1
log p(xk|xk−1)},

D12
k−1 = E{−∆xk

xk−1
log p(xk|xk−1)},

D21
k−1 = E{−∆xk−1

xk
log p(xk|xk−1)} =

[
D12
k−1

]T
,

D22
k−1 = E{−∆xk

xk
[log p(xk|xk−1) + log p(zk|xk)]}.

(19)

4.1 PCRB of RSS-based DFLT

Considering the nonlinear filtering problem with additive
Gaussian noise defined in (1), the conditional PDFs in (19)
are

− log p(xk|xk−1) = c1+ 1
2 (xk − f (xk−1))

T

·Q−1 (xk − f (xk−1)) ,

− log p(zk|xk) = c2+ 1
2 (zk − h (xk))

T

·R−1 (zk − h (xk)) ,

(20)

where c1 and c2 are constant scaling terms of the multivari-
ate distributions. Plugging (20) to (19) yields

D11
k−1 = E{(∇xf (xk−1)) Q−1 (∇xf (xk−1))

T },
D12
k−1 = −E{∇xf (xk−1)}Q−1,

D22
k−1 = Q−1 + E{(∇xh (xk)) R−1 (∇xh (xk))

T },
(21)

and since F is linear, and h(·) nonlinear for the problem
defined in (1), (21) simplifies to

D11
k−1 = FTQ−1F,

D12
k−1 = −FTQ−1,

D22
k−1 = Q−1 + HT

xR−1Hx,

(22)

where Hx is defined in (7). Now, the recursion to update the
FIM can be obtained by substituting (22) to (18) giving

Jk = HT
xR−1Hx + Q−1

−Q−1F
(
Jk−1 + FTQ−1F

)−1
FTQ−1, (23)

which can be simplified to

Jk = HT
xR−1Hx +

(
Q + FJ−1

k−1F
T
)−1

(24)

using the matrix inversion lemma. It is to be noted that the
bound is not defined when the target location coincides with
the position of the TX or RX since this results into division
by zero in Eq. (6).

The PCRB states that for any unbiased estimator,
the root-mean squared (RMS) localization error is lower
bounded by

RMSE(k) ≥ epk ,
√
{J−1

k }1,1 + {J−1
k }3,3, (25)

where {J−1
k }1,1 and {J−1

k }3,3 denote elements of the PCRB
matrix corresponding to the x- and y-coordinates. The PCRB
can be used as a pre-deployment predictor of localization
accuracy, providing an analytical method for system de-
sign and pre-deployment performance evaluation. As an
example, [10] uses the CRB to investigate the effect of node
geometry to imaging accuracy, [35] uses it to analytically
evaluate the developed model and [36] uses it for pre-
deployment performance assessment. In the following sec-
tion, we compare the RMS errors of RTI and the EKF to
the lower bound for localization RMSE, denoted by epk , to
evaluate the system and location estimators.
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4.2 Bound Analysis

The bound analysis is conducted using a network of 20
sensors that cover an area of 75 m2 and the devices are
distributed around the monitored area as illustrated in
Fig. 1a. The experimental setting is the same as the open
environment experiment described in Section 6 but the
data is simulated. For now, we consider a time-invariant
system so that we can focus on localizing a stationary target.
This assumption simplifies the PCRB analysis since time
evolution can be neglected and power spectral density of the
process noise can be set to zero, that is, q = 0. The PCRB and
position estimates are calculated assuming full connectivity
and that a single RSS measurement is available from each
TX-RX pair. The empirical cumulative distribution function
(ECDF) for the model parameter estimates in the open
environment experiment are shown in Fig. 6 and the median
of the ECDFs is used in the following analysis. Thus, the
RSS is modeled using: φl = −2.22 dB, λl = 0.04 m and
σ2
l = 1.42 dB2 ∀ l and parameters of the filters are given in

Table 2.
In Fig. 1a, 16 example locations and the lower bound on

3σ uncertainty ellipses illustrated together with the mean of
the RTI estimates and 3σ uncertainty ellipse. The average
lower bound on localization RMSE is ēp = 1

16

∑16
k epk =

0.1191 m and the RMSE of RTI estimates is 0.3980 m, over
three times higher than the bound. The advantage of RTI
is that the estimator does not require accurate priori infor-
mation about state of the target and the method can locate
the target as long as a sufficient number of links intersect
the location. As a disadvantage, the two-step estimator is
inefficient as it never reaches the lower bound as shown by
the uncertainty ellipses in Fig. 1a. The other disadvantage is
that measurement noise can result in images with multiple
peaks leading to inaccurate position estimates. An example
of a noisy RTI image is illustrated in Fig. 3b which leads to
an inaccurate position estimate and as a result, the uncer-
tainty ellipse of the RTI position estimator is very large in
many of the positions in Fig. 1a.

For the node configuration shown in Fig. 1a, the sum
of link contributions, htot(pk) =

∑L
l=1 e

−∆l(k)/λl , is cal-
culated and plotted as a function of target location pk in
Fig. 1b. Respectively, the PCRB on RMSE is computed and
illustrated in Fig. 1c. With the given model parameters, the
PCRB is entirely defined by the geometrical relationship
of the target and nodes, and the PCRB decreases as the
number of wireless links that intersect the location increases.
The minimum PCRB is 0.0449 m and the lowest values are
found beside the wireless devices on the side that faces
the monitored area. Respectively, the maximum PCRB is
1.4142 m and the worst localization accuracy is expected
in the corners of the monitored area where none of the
links intersect the location (see Fig. 1b). On average, the
PCRB is 0.1858 m and 80% of the monitored area has a
PCRB of 0.1308 m or lower. Thus, the localization accuracy
is expected to be high and similar performance is anticipated
throughout the monitored area as long as the target is not
close to the borders.

In Fig. 2, the PCRB and RMS errors of the estimators
illustrated as a function of number of devices per side when
they are equally spaced on the side of a X = 9.58 m by

Fig. 2: The PCRB as a function of devices per side ( ),
and the RMS errors of EKF ( ) and RTI w/ ( ) and
w/o outliers ( ) obtained over 1000 trials. An estimate is
considered an outlier if it is one meter or more from the true
location.

Y = 7.82 m deployment. The PCRB is a monotonically
decreasing function and the lower bound is cut to half every
time the number of devices per side is doubled. The RMS
errors of the RTI estimates are illustrated using three pixel
size values and as shown, lower RMS errors can be achieved
with higher image resolution but with the expense of in-
creased computational complexity. Interestingly, the RMS
error of the RTI estimates converge toward ēp → δp/

√
61.

This value is the lower bound for RTI and it requires that
the target can always be positioned to within the correct
pixel. The EKF is not constrained by discretization of the
monitored area resulting to lower RMS errors as shown in
Fig. 2. Moreover, the EKF is an efficient estimator as it nearly
achieves the bound already with a low number of devices
and it converges toward the PCRB as the number of sensors
increases.

In the analysis of Fig. 2, the EKFs prior on the
mean and covariance are set as x0 = xtrue +
Q0w and P0 = 3J−1 + Q0, where xtrue denotes
the true state and J is the FIM at xtrue, Q0 =
diag

([
0.252 m2 0.0 (m/s)2 0.252 m2 0.0 (m/s)2

])
and

w ∈ R4×1 is a zero-mean white Gaussian noise vector. The
EKF requires an accurate prior or otherwise the filter can
diverge and result to a biased estimate. This matter will be
further discussed in the following.

1. If the estimate locates within the correct pixel, the coordinate
errors can be considered as i.i.d. uniform random variables X ∼
U(− 1

2
δp,

1
2
δp) and Y ∼ U(− 1

2
δp,

1
2
δp). Then, the MSE is E[e2p] =

E[X2 + Y 2] = E[X2] + E[Y 2] = δ2p/6, where the expected value
of the uniformly distributed zero-mean random variable is known
to be E[X2] = E[Y 2] = δ2p/12 [46, Ch.6]. Thus, the RMS error is
E[ep] = δp/

√
6 and this value is the lower bound for RTI location

estimates.
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4.3 Discussion

Ideally, we would prefer to use the EKF since it is able to
achieve the PCRB and the filter is computationally efficient.
However, the filter has two important limitations. First, the
filter is prone to diverge if modeling errors exist. Second,
the filter requires the prior distribution to locate near the
true state. These reasons restrain using the EKF in real
world applications since the model parameters are known
to vary for each link [12] and the person’s location is not
known when initializing the filter. RTI can be considered as
complementary to the EKF, since RTI is significantly more
robust to modeling errors and it can be initialized without
prior information of the person’s location. Due to these
reasons, we present a novel Bayesian filter in the next section
that has the beneficial properties of both approaches.

5 FUSION ALGORITHM

5.1 Sampling and Processing

In RSS-based DFLT, the sensors are programmed to transmit
and receive packets from other sensors of the network.
Typically, the communication schedule follows a token pass-
ing protocol where one sensor transmits at a time while
the others are in reception mode [47]. After transmission,
the turn is assigned to the next sensor in the schedule
following the sensor IDs in sequential order. In the packets,
the sensors include the most recent RSS associated with the
transmissions of others’.

Let the wireless network consist of S sensors, then, when
the last sensor in the schedule transmits at time k the
payload of the packet is

zS(k) =
[
zS,1(k−S+1) zS,2(k−S+2) · · · zS,S−1(k−1) 0

]T
,

where zi,j(n) denotes the RSS that is transmitted by node j
and received by node i at time n. A base station listens to
the ongoing transmissions and it stacks the packets to form
a measurement matrix

{Z}k−S+1
k =

[
z1(k−S+1) · · · zS(k)

]T
, (26)

containing the RSS measurements of the last S packets
before processing. We denote this time interval as the com-
munication cycle and it contains a transmission from each
node and the elements of Z are

{Z}k−S+1
k =




0 z1,2(k−2S+2) · · · z1,S(k−S)

z2,1(k−S+1) 0 · · · z2,S(k−S)

...
...

. . .
...

zS,1(k−S+1) zS,2(k−S+2) · · · 0


.

The measurements of Z are clearly taken at different time in-
stances and a sequential processing scheme was introduced
in [16] to resolve this issue. The proposed scheme processes
the RSS one transmission at a time and the measurements
can be associated to the same time instant by delaying the
processing by S − 1 samples so that when TX j transmits at
time k, the RSS corresponding to the transmission of TX

i =

{
S − j + 1 if j ≡ S
j + 1 otherwise

,

becomes available at the base station. Using the time nota-
tion n = k − S + 1 we can write

zn,i , coli{Z}k−S+1
k . (27)

As an example, when the transmitter ID is j = S, the
measurements of node i = 1 can be processed since the
first column of the RSS matrix, zn,1 = col1{Z}k−S+1

k =[
0 z2,1(k−S+1) · · · zS,1(k−S+1)

]T, are related to the same
time instant k − S + 1. At the next time instant, the
transmitter ID is j = 1 and the measurements of
{Z}k−S+2

k+1 are updated accordingly. Now the measure-
ments of node i = 2 can be processed since the sec-
ond column of the RSS matrix, zn,2 = col2{Z}k−S+2

k+1 =[
z1,2(k−S+2) 0 · · · zS,2(k−S+2)

]T, are related to the same
time instant k − S + 2.

The sequential processing scheme improves the accuracy
and robustness of RSS-based DFLT [16] and taking the time
evolution correctly into account as given in (27), the problem
defined in (1) can now be written as

xn = Fxn−1 + qn−1, (28a)
zn,i = h (xn) + rn, (28b)

where n denotes the time, zn,i ∈ RS×1 is the new RSS
measurement vector and the corresponding measurement
noise covariance is Ri ∈ RS×S . Using zn,i, the noise
covariance, measurement model vector and Jacobian of the
EKF are replaced with

{Ri}j,j = σ2
l ,

{hi(x̂−
n )}j,1 = hl(x̂

−
n ),

{Hx,i(x̂
−
n )}j,· =

[
δhl

δpx
0 δhl

δpy
0
]
,

(29)

where i and j are the TX and RX IDs in respective order,
j = 1 . . . S and l = (i− 1) · S + j.

5.2 A Sequential Imaging Method
5.2.1 Image Filtering
The drawback of using the RTI formulation presented in
Section 3.3 is that the estimator requires the complete RSS
measurement matrix Z and it computes a batch estimate
of the changes within that communication cycle. In the
following, an image filter is presented which allows us to
recursively estimate the propagation field image every time
new measurements become available. Moreover, the time
evolution is more accurate with the proposed method.

The RTI solution in Eq. (11) is equivalent to forming the
image by summing together the link contributions

b̂n =
S∑

i=1

Πizn,i, (30)

where the jth column of Πi is defined as

{Πi}·,j = {Π}·,l (31)

and indexes i, j and l are defined as in (29). Now, instead
of summing the link contributions to form the image, an
adaptive filter is implemented to track the changes in the
image using Πizn,i.

The designed filter is similar to the one presented in [12]
with the difference that the presented filter estimates the
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images from the link contributions Πizn,i whereas the one
in [12] uses b̂k. In the filter, the image state is expressed as

m =

[
m1 m2 · · · mN

ṁ1 ṁ2 · · · ṁN

]
, (32)

where mj denotes the image intensity and ṁj change rate
of voxel j. The state-space model is

mn = Fmn−1 + qn−1, (33a)
bn = Hmn + rn, (33b)

where qn−1 ∼ N (0,Q) is the process noise and rn ∼
N (0,R) the measurement noise. The image is modeled
using a discrete white noise acceleration model (DWNA) as
in [12] for which the transition matrix, measurement model
and noises are [43, Ch.6]

F =

[
1 τ
0 1

]
, Q = qi

[
1
3τ

3 1
2τ

2

1
2τ

2 τ

]
, H =

[
1
0

]T
, R = σ2

i IN

(34)
where qi is the power spectral density of the image process
noise. Given the models, it is straightforward to implement
a KF for tracking state of the image. The prediction step of
the KF is [17, Ch.4]

m̂−
n = Fm̂n−1,

C−
n = FCn−1F

T + Q.
(35)

Thereafter, the mean m̂−
n and covariance C−

n are updated
when measurement zn,i becomes available using [17, Ch.4]

Sn = HC−
nH

T + R,

Kn = C−
nH

TS−1
n ,

m̂n = m̂−
n + Kn

(
Πizn,i − Hm̂−

n

)
,

Cn = C−
n −KnSnKT

n .

(36)

5.2.2 Positioning
If a single person locates within the area, it is expected that
the pixels with highest intensity locate near the target and
therefore, localizing the person can be postulated as finding
the mode of b̂n , Hm̂n [48]. If I = max(b̂n) denotes the
maximum component of the spatial field, than the mode is
in the set of pixels with intensity higher than γI . To simplify
the notation, let us define

b̃n =

{
b̂n if b̂n ≥ γI
0 otherwise

, (37)

and wn = b̃n/
∑

b̃n. Now, the position can be estimated as
the weighted sum of pixels

p̂n = pwn, (38)

where p ∈ R2×N are the pixel coordinates and wn ∈ RN×1

the pixel weights. The covariance of the estimate is defined
as

Nn = wn ◦ (p− p̂n) (p− p̂n)
T
, (39)

where ◦ is the Hadamard product. Note that the localization
proposed in (38) is only capable of locating one person.
Multi-target localization and tracking is a challenging task
in DFLT, and it is outside the scope of this paper. Thus, we
do not propose coordinate estimators for the multi-target

(a) (b)

Fig. 3: Two example RTI images and the position and
covariance estimates calculated using (38) and (39). In
the image, the plus sign indicates the true position, the
crosses are the position estimates and the dashed line il-
lustrates the 3σ uncertainty ellipse which is defined as
p̂n +

√
Nn[cos(β) sin(β)]T in which β = [0, . . . , 2π] and√

Nn denotes the lower Cholesky factorization of Nn such
that Nn =

√
Nn

√
Nn

T
.

case and for now, readers are referred to [15], [26], [31], [49]
for RSS-based multi-target tracking.

Two example RTI images are shown in Fig. 3 together
with the position and covariance estimates. The image on
the left shows that the pixels with b̂n ≥ γI are centered
around the true location, the position estimate is accurate,
and the estimated covariance is small. The image on the
right is noisy and does not clearly indicate the person’s loca-
tion. The estimated position is over a meter away from the
true location and the estimated covariance is significantly
higher then in the other image. Estimating the covariance
allows to take such uncertainties into account and the
Kalman filter gives less weight to position estimates that
are estimated from noisy images.

5.3 Fusion Filter
The FF composes of two filters running in parallel. The first
one is the image filter presented in Section 5.2 and it tracks
the changes in the discretized propagation field image. The
second filter is the target tracking filter that is implemented
using the EKF presented in Section 3.2. However, the update
step of the EKF is augmented with position measurements
from the imaging solution in order to bound the EKFs
measurement residuals by the position errors of the imaging
approach. Recursion of the FF at time step n is presented
in the following and pseudocode of the filter is given in
Algorithm 1. The filter recursion can be divided into three
stages:

1) Predict - Prediction step of the image and target filter.
2) Model concatenation - Forming the measurement model

matrices.
3) Update - Update step of the target filter.

In the prediction step, matrices F and Q in (34), and
F and Q in (3), are formed using sampling interval τ
and thereafter, prediction step of the filters is performed.
In the model concatenation step, measurement zn,i of TX
i becomes available and the image filter can be updated.
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From the filtered image m̂n, the position and covariance
are estimated as described in Section 5.2.2. Thereafter, the
measurement model matrices for the FF are formed as
follows

R̃ = blkdiag (Ri,Nn) ,

z̃n =
[
zTn,i p̂Tn

]T
,

H̃x(x̂−
n ) =

[
HT

x,i(x̂
−
n ) HT

]T
,

h̃(x̂−
n ) =

[
hTi (x̂−

n ) (Hx̂−
n )

T
]T
,

(40)

where Ri, hi(x̂
−
n ) and Hx,i(x̂

−
n ) are defined in (29) and

H =

[
1 0 0 0
0 0 1 0

]
.

Finally, in the update step, the Fusion Filter can be updated
as given by lines 12 through 15 in Algorithm 1.

Algorithm 1 Fusion Filter at time step n

1: procedure PREDICT
2: Form F, Q, F and Q using τ
3: Predict m̂−

n and C−
n using (35) . Image Prediction

4: Predict x̂−
n and P−

n using (8) . Target Prediction
5: end procedure
6: procedure MODEL CONCATENATION
7: Update image filter using (36)
8: Estimate p̂n and Nn from image using (38) and (39)
9: Form R̃, z̃n, H̃x(x̂−

n ) and h̃(x̂−
n ) using (40)

10: end procedure
11: procedure UPDATE
12: Sn = H̃x(x̂−

n )P−
n H̃T

x (x̂−
n ) + R̃,

13: Kn = P−
n H̃T

x (x̂−
n )S−1

n ,
14: x̂n = x̂−

n + Kn(z̃n − h̃(x̂−
n )),

15: Pn = P−
n −KnSnKT

n

16: end procedure

6 EXPERIMENTS

This section begins by introducing the experimental setup.
Thereafter, the different filtering algorithms are summarized
and initialization of the filters is discussed. The section is
concluded by presenting the evaluation metrics.

6.1 Experimental Setup
The used wireless sensors are Texas Instruments CC2531
USB dongles operating at the 2.4 GHz ISM band and the
sensors communicate in TDMA fashion as described in
Section 5.1 and further explained in [47]. The experiments
are conducted using all 16 frequency channels for commu-
nication in order to increase the system performance [19]
and the used channels are 11 − 26 as defined by the IEEE
802.15.4 standard [50]. The transmission interval between
communications is approximately τ ≈ 2.9 ms, which de-
fines the sampling period for the filtering algorithms.

The experiments are conducted with 20 nodes that are
deployed in two different environments as illustrated in
Fig. 4. In the open environment, the nodes are deployed
around the monitored area and the network covers a 75 m2

area. The nodes are set on top of podiums at approximately
waist height (≈ 0.9 m). The floor plan of the apartment

is 82 m2 and the nodes are deployed so that the person
can be located throughout the entire house. To replicate
a realistic deployment scenario, 18 nodes are installed by
electric sockets of the apartment so that we could power
them using AC adapters. The walk-in closets did not have
electric sockets on the exterior walls, so we decided to
deploy one battery powered node in each to ensure coverage
of the entire apartment. These two nodes are located at
[0.08 2.89]T and [10.24 2.80]T .

In the experiments, markers are placed inside the mon-
itored area for the test person to follow. During the experi-
ment, the person always walks directly from one validation
position (as illustrated in Fig. 4 using ) to another and
once the person reaches the destination, they stop for a few
seconds before proceeding to the next validation position. In
both environments, three different trials are conducted and
in each trial, the person is inside the area for approximately
three minutes and every validation position is visited at
least once. During the experiments, the person is carrying a
video camera. In post-processing, the RSS and video streams
are synchronized and the video is used to generate the
ground truth trajectory. However, we evaluate the tracking
accuracy only when the person is stationary to ensure that
the ground truth position is correct.

A recent work has presented the means for an adaptive
RTI (ARTI) system to use unsupervised training for estimat-
ing the unknown model parameters [12]. This improves the
RSS models over time as data is gathered and enhances the
system performance. We could adapt similar algorithms in
this paper but for simplicity, we calibrate the model parame-
ters using the ARTI system [12] and then use these estimates
in our filtering algorithms. Thus, the RSS model parameters
θl =

[
φl λl σ2

l µl
]

are estimated by minimizing the
cost function

J(θl) =
K∑

n=1

[zl(n)− hl(x̂n;φl, λl)]
2
,

{
−30 ≤ φl ≤ 30

0.001 ≤ λl ≤ 1
(41)

where K is the total number of estimates in one trial
(approx. 180 seconds of data), zl(n) is the measured
RSS, hl(·) is evaluated using ARTI state estimates x̂n

2,
and the dependence of hl(·) on the model parameters
is now explicitly stated. In this paper, constrained non-
linear optimization [51] is used to find the minimum of
J(θl) and thereafter, the maximum likelihood (ML) esti-
mates of µl = 1

K

∑K
n=1 (z̃l(n)− hl(x̂n;φl, λl)) and σ2

l =
1
K

∑K
n=1 (z̃l(n)− µl − hl(x̂n;φl, λl))

2 are obtained.

6.2 Filtering Algorithms
In the following, the different filters are summarized. The
process noise value of the filters has been used as a tuning
parameter to maximize performance of each filter. Other-
wise, a specific value might favor one filter over another.
• FF - The Fusion Filter can be implemented using Algo-

rithm 1 and the imaging parameters of the system are
given in Table 2. The selected parameter values work in a
wide range of environments and they are close to the ones

2. In the model calibration phase, the RTI position estimates are
substituted with the person’s true coordinates whenever the person
is stationary and used as input in the filtering recursions.
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(a) open environment (b) apartment environment

Fig. 4: The experimental layouts in which the nodes ( ) and the validation positions ( ) are illustrated. The apartment was
fully furnished with two beds, nightstands, cupboards, a sofa, coffee table, etc., but the furniture is omitted from the figure.

used in [12]. The process noise of the kinematic state is set
to q = 0.1 m/s2.

• EKF - The first benchmark system is the EKF solution
presented in [16]. The algorithm is summarized in Section
3.2, the filter uses sequential processing and the process
noise is the same as for the FF.

• PF - The second benchmark system is a particle filter,
which is the de facto nonlinear Bayesian filter used in RSS-
based DFLT [13], [14], [15]. The used PF is a sequential im-
portance resampling (SIR) filter where the dynamic model
is used as the importance distribution. The implemented
PF uses 10000 particles, resampling is performed once the
number of effective particles is below 1000 and the pro-
cess noise is increased to q = 1 m/s2 and σ2

l is increased
by one, to mitigate the sample depletion problem [52]. The
readers are referred to [17], [53] for further details on PFs.

• ARTI - The third benchmark system is ARTI [12]. We mod-
ify the original ARTI algorithm so that the measurements
can be processed sequentially as explained in Section 5.1.
In addition, the online estimator (see Algorithm 2 in [12])
is disabled because the parameters are already estimated.
The imaging and filtering parameters are given in Table 2
but the pixel width is decreased to δp = 0.15 m so that dis-
cretization does not degrade the tracking accuracy. ARTI
locates the person using (12) and a KF is implemented
to track the target. The process noise of the filter is set
to q = 1 m/s2 and the measurement noise covariance is
N = diag

([
0.25 m2 0.25 m2

])
.

6.3 Filter Initialization

The image state is initialized with an all zeros matrix
and the covariance as C0 = diag

([
1 dB2 1 (dB/s)2

])
.

The target tracking filter is initialized using the true
state of the target when the person has reached the first
validation position and the covariance matrix is set to
P0 = diag

([
0.1 m2 0.1 (m/s)2 0.1 m2 0.1 (m/s)2

])
.

We want to make the following remarks: i) An inaccurate

TABLE 2: Experimental parameters

Parameter

Regularization parameter in (11) α 500

Pixel width δp 0.25 (m)

Correlation distance in (13) δd 2 (m)

Image process noise in (34) qi 0.1 (dB/s2)

Image measurement noise in (34) σ2
i 0.03 (dB2)

Image threshold (37) γ 0.75

RSS model parameter (4) φ −2.22

RSS model parameter (4) λ 0.04

Measurement noise (1) σ2 1.42

prior does not cause the imaging solutions to diverge, the
methods are not particularly sensitive to initialization and
only the first few estimates would be affected by inaccurate
initialization. ii) The FF could be designed so that the
algorithm would only use the position estimates of the
imaging solution in the beginning. After convergence, the
filter would switch to the augmented measurement model.
iii) The EKF requires that the initial estimate is close to
the true state. The priori estimate could be obtained for
example using an imaging solution or initializing numerous
EKFs simultaneously and keeping the one that converges.
iv) The PF could be initialized by uniformly distributing the
particles inside the monitored area, and with a sufficient
number of particles, the posterior distribution is expected
to converge to the true state. Initialization of the filters is
not within the scope of this work, and for a fair comparison
of the different filters, we have chosen to use the true state
instead of implementing a different initialization procedure
for each filter.
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6.4 Evaluation Metrics
The filters are evaluated using the localization RMSE

ēp =

√√√√ 1

K

K∑

n=1

(ep(n))2, (42)

where K is the total number of estimates in one trial (ap-
prox. 180 seconds of data) and the distance error at sample
n is calculated as

ep(n) =
√

(px(n)− p̂x(n))2 + (py(n)− p̂y(n))2,

in which px and py denote the true coordinates and the hat
accent indicates the estimate. In addition, we use the ratio
of measurements outside a defined threshold for examining
robustness of the filters. The metric is defined as

e% =

(
1− M

K

)
· 100%, (43)

where M is the number of estimates within one meter of
the true location. Typically, the filter has diverged from the
correct trajectory if the estimate is one meter or further from
the true position.

It is to be noted that the sequential processing scheme
introduces a delay of (S − 1)τ ≈ 55 ms to the estimates
which corresponds to a distance error of 0.055m if the
person moves at 1 m/s. This might have an impact in critical
real-world applications if for example the system would
be used in collaborative human-robot workspaces [22]. In
non-critical applications such a delay can be neglected,
especially when duration of the delay is known. In this
paper, the delay caused by the sequential processing scheme
can be calculated from the transmission times and the lag is
removed from the position estimates before calculating the
evaluation metrics given above.

7 RESULTS

The development efforts are experimentally and numeri-
cally evaluated in this section and the FF is compared with
respect to the EKF, PF and ARTI solutions. It is to be noted
that the system performance strongly depends on the used
model parameters and their accuracy. Thus, we investigate
two scenarios:

• Scenario 1: Using an educated guess for the model
parameters and the same value is used for all links.

• Scenario 2: Using the training scheme explained at the
end of Section 6.1 and using the unique model parame-
ter estimates for each link.

The ECDFs of the model parameter estimates in the open
environment are illustrated in Fig. 6 and these values are
used in scenario 2. In scenario 1, the educated guess is the
median of the ECDFs and the RSS is modeled using: φl =
−2.22, λl = 0.04 and σ2

l = 1.42 ∀ l.

7.1 Experimental Results
The RMS errors of the filters in the different scenarios and
trials are summarized in Table 3 for the open environment
experiment. In scenario 1, when an educated guess is used
for the model parameters, the EKF and PF always diverge
because the filters can not tolerate significant modeling

TABLE 3: RMSE [cm] in the open environment experiment

Scenario / Trial FF EKF PF ARTI
1 / 1 75.2 − − 99.3

1 / 2 103.6 − − 115.1

1 / 3 80.8 − − 97.2

1 / average 86.3 − − 103.9

2 / 1 10.0 − 9.6 22.7

2 / 2 10.9 10.2 11.1 21.7

2 / 3 12.3 9.5 10.1 19.9

2 / average 11.1 − 10.3 21.4

TABLE 4: RMSE [cm] in the apartment experiment

Scenario / Trial FF EKF PF ARTI
1 / 1 80.3 − − 84.7

1 / 2 91.0 − − 100.9

1 / 3 82.9 − − 94.3

1 / average 84.7 − − 93.3

2 / 1 28.4 − − 43.0

2 / 2 30.7 − − 39.4

2 / 3 26.8 − − 40.3

2 / average 28.6 − − 40.9

errors. The imaging solutions are more robust to such mod-
eling errors and despite individual position estimates can be
inaccurate, the imaging solutions are able to track the person
at least to some extent. On average, the FF performs slightly
better than ARTI and both methods are able to achieve an
RMS error of approximately one meter or below.

Next, the filters are run on the same experimental data
and using scenario 2. The EKF solution results to the lowest
RMSE in two of the trials when the filter does not diverge.
With respect to the EKF solution, the PF is more robust but
it is not as accurate despite using 10000 particles. The lower
accuracy results from increasing the process and measure-
ment noises, which in our case was mandatory to avoid the
sample depletion problem and divergence issues in the open
environment. With respect to the nonlinear filters, ARTI has
a higher RMSE because the position estimates are always
affected by discretization of the image. In addition, the
time evolution can not be solved as accurately because the
image formation always requires low pass filtering which is
performed with the KF in this paper. In this experiment,
the FF never diverges and the accuracy of the filter is
comparable to the other nonlinear filters and it provides a
superior combination of robustness and accuracy.

The coordinate estimates of the filters in scenario 2 are
illustrated in Fig. 5a for trial 1 and the position estimates
are shown with respect to the validation positions in Fig. 5c
for trial 2. On most parts, the coordinate estimates of the
filters overlap one another. However, the ARTI estimates
are slightly more spread out as shown in Fig. 5c and the
trajectory is not as smooth as can be seen in Fig. 5a. In the
figure, the time instance (t = 158 s) when the EKF diverges
is also shown. The trajectory should be a straight line from
one validation position to another but all filters result to in-
accurate estimates with the difference that the EKF diverges
and the other filters are able to recover. It is to be noted
that if the modeling assumptions hold, the EKF is the best
performing filter in the mean squared sense and no other
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(a) open environment (b) apartment

(c) open environment (d) apartment

Fig. 5: Experimental results - In (a) and (b), coordinate estimates of the filters in the two environments. In the figures, the
validation positions are illustrated with ( ) and filter estimates are shown using: EKF ( ), PF ( ), ARTI ( ) and FF
( ). In (c) and (d), position estimates of the filters in the validation positions. In (b) and (d), the EKF and PF estimates are
omitted from the figure because the filters have diverged.

filter can outperform it. However, the open environment
experiment is actually very simplifying and modeling errors
are very common due to the complex nature of the indoor
propagation channel. Next, we show that the EKF and PF
fail in more realistic deployment scenarios even though the
model parameters are trained.

Next, the filters are run on experimental data from the
apartment experiment and using scenario 2. The coordinate
estimates of the filters are illustrated in Fig. 5b and the
position estimates are shown with respect to the validation
positions in Fig. 5d for trial 1. The apartment experiment is
significantly more challenging since most of the nodes have
non line-of-sight (NLOS) communication with one another
and multipath propagation is common. As an outcome,
the person’s presence in between the transceivers does not
necessarily cause the RSS to change. On the other hand,
the person can alter static multipath components causing
a significant RSS change even for large ∆ values. These

can result to significant modeling errors and the EKF and
PF always diverge in the apartment experiment due to
this reason. Thus, the coordinate estimates of the filters are
omitted from Figs. 5b and 5d. Since the imaging solutions
do not rely on an accurate image prior, the methods are
significantly more robust to modeling errors and can track
the person even in challenging environments as shown in
the figures and as given in Table 4. More quantitatively,
the average RMS error is 40.9 cm for ARTI and 28.6 cm for
FF, decreasing the RMSE by 30% with respect to ARTI. In
scenario 1, the results are similar to the ones in the open
environment and the results are summarized in Table 4.

The average computation times to initialize the filters
and to compute a single recursion are given in Table 5 for
the open environment experiment. The results are obtained
using a Matlab implementation and a standard laptop
equipped with a 2.70 GHz Intel Core i7-4800MQ processor
and 16 GB of RAM. Initializing the nonlinear filters is
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(a) (b) (c)

Fig. 6: The empirical CDFs for θ = [φ λ σ] in the open environment experiment ( ) and the distribution fits ( ). The
fitted distributions are: non-standardized Student’s t-distribution φ ∼ T (−2.22, 4.09, 8.09), log-normal λ ∼ L(−3.14, 1.23)
and Gamma σ ∼ Γ(2.66, 0.51).

TABLE 5: CPU times in milliseconds

FF EKF PF ARTI
Initialization 2107.3 0.5 1.5 13920.3

Filter recursion 0.410 0.075 5.945 0.590

negligible, whereas the imaging methods require computing
the projection matrix given in (11) which requires inverting
large matrices. Complexity of matrix inversion is at least
quadratic3 and N ∝ (1/δp)

2 so that the overall complexity
of calculating the projection matrix relates to the pixel size
via O[(1/δp)

4
]. The quartic proportion increases the compu-

tational complexity rapidly as the pixel size decreases, and
ARTI requires seven times longer to initialize than FF. For
ARTI, the initialization time can be reduced by using a larger
pixel size, but at the same time, the RMS error increases. As
an example, the RMSE of ARTI increases by 27% to 27.2 cm
in the open environment experiment when δp = 0.25 m.

In the experiments, the time interval between two trans-
missions is approximately 2.9 ms which defines the sys-
tem’s sampling rate and also sets an upper bound on how
long a single filter recursion can last. As shown, the PF
exceeds this value and real-time operation is not possible
when 10000 particles are used. The computation time could
be decreased by using fewer particles but at the same
time, the filter becomes even more vulnerable to divergence
issues. The other filters can easily be implemented in real-
time and the EKF is superior to the other methods. However,
its use is limited to very simplistic environments and when
the model parameters are known. Lastly, the FF is more
efficient than ARTI because the real-time computation of the
image estimate has complexity O[NL] and N ∝ (1/δp)

2. In
the next section, the PF uses N = 1000 particles so that a
real-time implementation would be possible.

3. The complexity is at least O
(
n2

)
because an n × n matrix has n2

values but naive algorithms can have a complexity of O
(
n3

)
.

7.2 Numerical Results

The performance and differences between the filters is fur-
ther analyzed in this section using simulations which repli-
cate the open environment tests. This experimental setting
is chosen because all filters were capable of tracking the
person successfully in this environment. First, we compute
the ECDFs for the model parameter estimates in the open
environment. Thereafter, various distributions are fitted to
the data and the one that maximizes the log likelihood is
used to describe the model parameter. The ECDFs and the
fitted distributions are illustrated in Fig. 6 and the selected
distributions are: non-standardized Student’s t-distribution
φ ∼ T (−2.22, 4.09, 8.09), log-normal λ ∼ L(−3.14, 1.23)
and Gamma σ ∼ Γ(2.66, 0.51). Interestingly, the same dis-
tributions can be used to describe the apartment experiment
model parameters and similar behavior was reported in [12].
This suggests that each parameter might follow a specific
distribution where the parameters of the distribution are
specified by the environment and layout of the network.
Such information would aid pre-deployment performance
assessment and could be used as informative priors to the
model parameters. However, further investigation is left for
future work.

In the simulations, the model parameters for each link
are randomly drawn from the fitted distributions, and in an
ideal scenario the model parameter is known. In reality, the
model parameters are unknown in advance and an educated
guess must be used. We use the median of the ECDFs as
given in Table 2 and the DC term µ is assumed known for
each link. In the simulations, the educated guess is used for
link l randomly with probability P and we denote P as the
fraction of links with incorrect θl. Note that the educated
guess is likely to differ from the drawn parameter values.
In the analysis, the filter performance between the two
extremes is studied, that is, having perfect knowledge of the
model parameters P = 0% and having no prior information
of the model parameters P = 100%.

The simulated trajectory and filter estimates averaged
over 1000 Monte Carlo simulations are illustrated in Fig. 7a
and the PCRB and RMS errors are shown in Fig. 7b when
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(a) (b) (c)

Fig. 7: In (a), the trajectory and coordinate estimates of the different filters averaged over the 1000 Monte Carlo simulations.
In (b), the trajectory’s acceleration magnitude shown above and the PCRB and RMS errors of the filters shown below. In
(c), the evaluation metrics illustrated when the modeling error increases.

P = 0%. As shown in Figs. 7a and 7b, the state estimates of
the nonlinear filters are close to the true coordinates’ while
the ARTI estimates are not as accurate. As discussed earlier,
ARTI performance is degraded by discretization and the
estimates are lagging because the image formation always
requires low pass filtering. For the y coordinate estimates
in Fig. 7a, the impact of discretization can be seen between
t = 88 − 92 s and the effect of low pass filtering between
t = 84 − 88 s. The nonlinear filters do not have such
drawbacks and as shown in Fig. 7b, the nonlinear filters
nearly reach the PCRB. However, RMSE of the PF is slightly
higher because the process and measurement noise of the
filter have been increased to mitigate the sample depletion
problem [52]. The time averaged PCRB is 2.53 cm over the
1000 Monte Carlo simulations and the RMSE of the filters in
increasing order are: 3.01, 3.17, 3.62 and 14.42 cm for EKF,
FF, PF and ARTI in corresponding order. Thus, the results
are inline with the experimental results, that is, the EKF
achieves the lowest RMSE in ideal scenarios, the FF and PF
are slightly more inaccurate and ARTI has the highest RMSE
in ideal scenarios. It is to be noted that acceleration of the
person is non-zero for short time periods when the person
stops and starts moving as shown in Fig. 7b. During these
time intervals, the RMSE of the nonlinear filters increase as
shown in Fig. 7b. A multiple model (MM) approach [43, Ch.
11] could be adopted where multiple filters would be run in
parallel, each having a different process noise value. How-
ever, the improvement is expected to be marginal because
maneuverability of the target is low and the maneuvers last
for short time periods.

Next, robustness of the filters is studied by increment-
ing P so that the number of links that use the educated
guess instead of the true model parameter value increases.
The results are shown in Fig. 7c, and the advantages and
disadvantages of the filters are clearly conveyed by the
evaluation metrics. Ideally, the model parameters would
be known and a good choice for the filter is an EKF due
to its high tracking performance and low computational
overhead. However, as the fraction of links with modeling
error increases, the PF and EKF start to experience diver-

gence issues and the filters can not be used as stand alone
solutions. The PF can cope slightly better with the modeling
errors but the improvement is insignificant considering the
added computational complexity. The imaging solutions are
significantly more robust to modeling errors and the filters
are able to track the target even though all links are using an
incorrect model parameter value. The main reason for this
is that the imaging methods do not rely on an accurate prior
when estimating the images. As shown in Fig. 7c, FF always
outperforms ARTI and in the most challenging scenario
when P = 100%, the RMSE is 0.26 m with FF and 0.42 m
with ARTI, an increase of 62% in tracking error. Thus, the
numerical results support the experimental findings and we
can conclude that the FF provides a superior combination of
robustness and accuracy. It is to be noted that the numerical
and experimental results do not correspond one another
precisely because the used model is a simplification of the
actual propagation phenomena and error sources.

8 CONCLUSIONS

The PCRB of RSS-based DFLT is derived in this paper and
two estimators are evaluated with respect to the bound. The
first estimator is a two-step imaging approach which first
estimates the changes in the propagation field and then the
person is localized from the image. The second estimator
is a Bayesian filter which is realized using an EKF and
the method directly relates the RSS measurements to the
person’s kinematic state. The bound analysis clearly shows
that the EKF is efficient as it nearly reaches the bound and it
is superior to the imaging approach in terms of localization
accuracy. However, the EKF has practical limitations which
restrict its use in real world deployments and in this paper,
we address these limitations by introducing a Fusion Filter
which merges the EKF and imaging solutions. The benefit
of the proposed approach is that the filter’s measurement
residuals are bounded by the position errors of the imaging
approach and as an outcome, the filter has the robustness
of an imaging method and the tracking accuracy of a non-
linear Bayesian filter. The results imply that the presented
filter nearly achieves the performance of the EKF in ideal
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scenario, and it is as robust as the imaging solution in non-
ideal scenarios.

Developments of this paper open interesting opportuni-
ties in smoothing and parameter estimation since the Rauch-
Tung-Striebel smoother can be directly applied to improve
the state estimates of the presented filter. Moreover, the
required expectations and maximization step for an expec-
tation maximization algorithm can be computed in closed
form using the smoothing distributions. These topics will
be explored in future research.
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