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Abstract—In this paper, data-driven Gaussian process models
for received signal strength-based device-free localization are
presented. The models have physically interpretable parameters
that can be explained by analytical models. Moreover, the
presented models can approximate highly nonlinear signal
propagation patterns such as a target’s influence on existing
multipath components which is generally treated as unwanted
noise that degrades the system performance. The models are
evaluated with experimental data and the results indicate that
compared to a prior-art reference model, the proposed models
decrease the modeling error and improve the localization accuracy,
especially in multipath rich indoor environments.

Index Terms—Gaussian processes, propagation modeling, re-
ceived signal strength, device-free localization.

I. INTRODUCTION

Radio frequency (RF) sensing technologies utilize perturba-
tions of the wireless channel for estimating physical quantities
of interest such as vital signs [1], location of a person [2],
or crowd density [3]. The attributes ”sensorless”, ”passive”,
and ”device-free” are often used to highlight the differentiating
feature of the technology, which is, the sensing modality does
not require the monitored subject to wear or carry a device. RF
sensing leverages the fact that the target alters the propagation
characteristics of radio signals and at the receiver (RX), these
changes can be quantified using the radio’s channel estimate.
Dedicated hardware and large bandwidths can be used for
acquiring high resolution delay estimates [1]. On the other
hand, commodity wireless devices that provide received signal
strength (RSS) estimates are not as informative, but still convey
enough information for localization [2]. In this paper, we
consider RSS measurements of narrowband wireless devices
which are utilized for device-free localization (DFL).

A fundamental component of DFL systems is the model that
explains the RSS as a function of target’s location. In RSS-
based DFL, a wide variety of analytical and empirical models
have been proposed and it has been argued that the target
induced perturbations to the wireless channel are caused by
shadowing [2], reflection [4], and diffraction [5]. The models
are typically parameterized using the excess path length (the
length of the affected path minus the distance between the
transmitter (TX) and RX). Typically the largest perturbations
are expected when the target obstructs the link line, which is
the imaginary line between the TX and RX, [2], [5]–[7] and
the influence decays as the excess path length increases [4], [6].
A major limitation of RSS-based DFL models is that they only
explain RSS changes when the excess path length is small [2],

Fig. 1. The RSS predicted by a data-driven GP model revealing that the
target’s impact has the highest effect on the wireless link in a wedge shaped
region between the transceivers. The link line shown using ( ) with TX
located at pTX = [0.08, 4.54]⊤ and RX at pRX = [5.53, 8.00]⊤.

[6], [8]. Also, they cannot explain RSS changes when the target
alters an existing multipath component.

In active RSS-based localization, in which the localized
entity is a mobile device, Gaussian processes (GPs) are
commonly used to model the RSS [9]–[11]. The main benefit of
the GP model is that it is able to approximate highly nonlinear
signal propagation models, uncertainty can be correctly handled,
and the model is continuous allowing estimation at arbitrary
locations [9]. Inspired by this, we propose three different
GP models for RSS-based DFL. Fig. 1 illustrates the RSS
perturbation map of a single wireless link modeled using a GP
and as shown, the proposed model is able to capture complex
propagation patterns that cannot be explained with analytic
models. The contributions of the paper can be summarized
as follows: (i) we propose three different GP models for
RSS-based DFL; (ii) the properties of the models are analyzed
using experimental data; (iii) the GPs are demonstrated using
two DFL experiments showing that the models are superior
compared to a widely utilized parametric RSS-model.

II. GAUSSIAN PROCESSES FOR DEVICE-FREE
LOCALIZATION

In this section, we briefly review GP regression and introduce
the proposed GP models for RSS changes in DFL. For a more
thorough introduction to GPs, see [12].



A. Gaussian Process Regression

GPs provide a Bayesian, non-parametric approach for data-
driven modeling of smooth functions [12]. In particular, assume
that the random function f : RN 7→ R is assigned a GP prior
GP(m(x), k(x,x′)) with mean function m(x) and covariance
function k(x,x′), that is, let

f(x) ∼ GP(m(x), k(x,x′)). (1)

Without loss of generality, we assume that the mean function
m(x) is zero for the remainder of this paper. Furthermore, note
that the mean and covariance functions typically are (implicitly)
parametrized by a set of hyperparameters θ.

Next, assume that we are given a set of (training) inputs
x1:n = {x1,x2, . . . ,xn} together with noisy observations
y1:n = {y1, y2, . . . , yn} according to

yi = f(xi) + εi, (2)

where εi ∼ N (0, σ2
ε) is zero-mean Gaussian measurement

noise with variance σ2
ε . Predicting the function value for a

test point x⋆ can then be achieved by finding the predictive
density [12]

p(f(x⋆) | y1:n) = N (E[f(x⋆)],V[f(x⋆)]) (3)

with predictive mean E[f(x⋆)] and variance V[f(x⋆)]

E[f(x⋆)] = k⋆(K+ σ2
εI)

−1y, (4a)

V[f(x⋆)] = k(x⋆,x⋆)− k⋆(K+ σ2
εI)

−1k⊤
⋆ . (4b)

Here, y =
[
y1 y2 . . . yn

]⊤
is the measurement vector,

K =



k(x1,x1) . . . k(x1,xn)

...
. . .

...
k(xn,x1) . . . k(xn,xn)




is the covariance matrix of the training data, and

k⋆ =
[
k(x⋆,x1) . . . k(x⋆,xn)

]

is the cross-covariance between the test and training data.
The covariance function is a measure of the similarity

between different function values. Its design and choice is
key when employing GP models. Here, we use two types of
covariance functions. The constant covariance function

kconst(x,x
′) = σ2

µ, (5)

and the squared exponential covariance function

kse(x,x
′) = σ2 exp

(
− 1

2ℓ2 ∥x− x′∥2
)
. (6)

Finally, a common way to learn the hyperparameters θ of the
covariance function is by maximizing the marginal likelihood
function [12]

log p(y1:n) = −1

2
log|K| − 1

2
y⊤K−1y − n

2
log(2π) (7)

using, for example, gradient descent.

B. Gaussian Process Received Signal Strength Models

In this paper, we use GPs as outlined above to model the
RSS in DFL, that is, the measurements yi correspond to the
RSS. In particular, consider an area indexed by the closed and
convex set A ⊂ R2 and a wireless link l between a TX located
at pl,TX ∈ A and an RX located at pl,RX ∈ A. Then, the RSS
for link l in decibel is given by [2]

yl = Pl + Ll + Sl + Fl + εl, (8)

where Pl is the transmitted power, Ll static losses due to
distance and antenna pattern, Sl shadowing loss due to objects
that attenuate the signal, Fl fading loss that occurs from
constructive and destructive interference of narrowband signals
in multipath environments and εl ∼ N (0, σ2

ε) is zero-mean
Gaussian measurement noise [13].

Next, consider an arbitrary position within the monitored
area at p ∈ A and define the excess path length as

∆l,p ≜ dl,TX + dl,RX − dl (9)

where dl,TX = ∥pl,TX − p∥, dl,RX = ∥pl,RX − p∥ and dl =
∥pTX − pRX∥. A de-facto standard model for the general RSS
model in (8) is the exponential model [6], given by

yl = µl + ϕl exp(−∆l,p/ℓl) + εl, (10)

where µl, ϕl and ℓl are the mean, magnitude and length scale
parameters. However, this model does not always capture all
aspects of the RSS well enough, for example in challenging
multipath environments. Hence, rather than using the exponen-
tial model or modeling the different components analytically
using, for example, first principles, we propose to use a GP
model according to (1)–(2) and let

yl = fl(x) + εl (11)

with fl(x) ∼ GP(0, k(x,x′)).
The main challenge is then the choice of covariance

function k(x,x′) and the regressors x. Here, we explore three
models and for each wireless link l, an independent model is
considered.

1) Model 1 (GP1): The first model simply replaces the
exponential model using a GP. Hence, the model input is the
excess path length (9). Furthermore, we use the sum of a
constant and squared exponential covariance function such that

k(x,x′) = kconst(∆l,p,∆
′
l,p) + kse,1(∆l,p,∆

′
l,p). (12)

The hyperparameters of GP1 are θ =
[
σ2
µ σ2

1 ℓ21 σ2
ε

]⊤
.

2) Model 2 (GP2): The second model uses the target’s
Cartesian coordinates p rather than the excess path length as
the model input. Again, the sum of the constant and squared
exponential covariance function is used, that is,

k(x,x′) = kconst(p,p
′) + kse,2(p,p

′). (13)

The hyperparameters of GP2 are θ =
[
σ2
µ σ2

2 ℓ22 σ2
ε

]⊤
.



3) Model 3 (GP3): The third model combines the first and
second model and uses both the excess path length ∆ℓ,p as
well as the target’s Cartesian coordinates p as the input. The
covariance function is a sum of a constant and two squared
exponential covariance functions. This yields the model

k(x,x′) = kconst(x,x
′)+kse,1(∆l,p,∆

′
l,p)+kse,2(p,p

′) (14)

and for GP3, θ =
[
σ2
µ σ2

1 ℓ21 σ2
2 ℓ22 σ2

ε

]⊤
.

C. Localization

To localize a target (i.e., estimate its position) given previ-
ously unseen data for L links y1:L,⋆ = {y1,⋆, y2,⋆, . . . , yL,⋆},
we can maximize the predictive marginal log-likelihood with
respect to the unknown x⋆. The predictive marginal likelihood
for L links is given by [12]

p(y1:L,⋆ | y1:n) =
L∏

l=1

N (yl,⋆; E[fl(x⋆)],V[fl(x⋆)] + σ2
l ).

Localization amounts then to maximizing the marginal log-
likelihood according to

x̂⋆ = argmax
x⋆

(log p(y1:L,⋆ | y1:n)) . (15)

In this paper, the maximum likelihood estimate (MLE) in (15)
is computed using a grid search with δx = 25 cm grid spacing.

III. RESULTS

A. Experimental Setup

The experiments are conducted using TI CC2531 wire-
less transceivers (TRXs) that communicate in a round-robin
schedule in which one TRX broadcasts at a time while the
rest listen, measure the RSS and append the measurement to
the packets they transmit. A base station that overhears all
the traffic extracts the RSS from the packets for centralized
processing. The TRXs operate at the 2.4 GHz ISM band using
four frequency channels defined by the IEEE 802.15.4 standard
(wavelength λ ≈ 12.5 cm). The communication protocol and
used hardware are further explained in [7].

The experiments are conducted in an open indoor envi-
ronment and in a fully furnished two bedroom downtown
apartment (see Fig. 3 and [8] for further details). Both
experiments are carried out with 20 TRXs and the position
estimate in (15) is computed using L = 1520 unique RSS
measurements. In the experiments, the target walks along
a straight line between predefined reference positions. The
data that is gathered when the target is moving is used for
training the models and length of the training data varied
from 77 to 98 seconds. The length scales of the GPs are
fixed while the other hyperparameters are determined from
training data. In each reference position, the target remains
stationary for a few seconds and this data is used for testing
the models since the target’s location at these time instances
is accurately known. In both environments, three different
trials are conducted and two different validation schemes are
considered: hold-out validation and cross-validation. In hold-
out validation, the training and testing are conducted using data

from the same trial whereas in cross-validation, the models are
trained using data from one trial and then tested using data
from another trial. The localization root mean squared error
(RMSE), ex = ( 1

n∗

∑n∗
i=1∥xi,∗ − x̂i,∗∥2)1/2, and modeling

RMSE, ey = ( 1
L

∑L
l=1∥yl,∗ − E[fl(x⋆)]∥2)1/2, are used to

quantify the system performance.

B. Modeling Results

The parametric exponential model (EM) captures RSS
changes when the target is in the close vicinity of the imaginary
line connecting the TX and RX as illustrated in Fig. 2. The
model is widely used in DFL [6], [8] and its properties have
been thoroughly analyzed [7]. The mean parameter of the
model explains the average received power in case the target is
missing or far away. The magnitude parameter of the model can
be either positive or negative [7], [8] and a common consensus
is that a target’s perturbation of the link line causes the RSS
to decreases if the link is in an antifade state, and increase
if the link is in a deep fade state [14]. Typically the length
scale parameter that defines the area in which RSS changes
are measured is fixed to a small constant value, for example,
0.02− 0.03 [6], [8].

The GP1 model has similar expressiveness as the exponential
model since the covariance function of the model is parame-
terized using the excess path length. The constant covariance
function kconst(·, ·) captures the average received power and
kse,1(·, ·) explains link line perturbations. However, the model
can also capture RSS changes that are not on the link line. As
shown in Fig. 2, the GP1 model predicts that the RSS decreases
in an elliptic region that is not on the link line. One explanation
for such changes is that a target can create new multipath
components due to single bounce reflection which alters the
received power [15]. The reflected multipath component causes
periodic RSS changes according to cos(2π∆l,p/λ) [4] and the
autocorrelation function of the periodic component is positive
when |∆l,p−∆′

l,p| ≤ λ/4. Thus, a suitable value for the length
scale of kse,1(∆l,p,∆

′
l,p) is ℓ1 = λ/4 which we have used in

the experiments.
The GP2 model uses the target’s Cartesian coordinates p

as the model input and it differs notably from the two models
discussed above. The model captures similarity in RSS across
the 2D coordinate space, whereas for GP1 similarity is captured
in the 1D space of the excess path length. As illustrated in
Fig. 2, GP2 predicts that the signal on average attenuates when
the target is on the link line. Moreover, the model indicates
that attenuation is not constant along the link line which can
be explained using diffraction theory [5]. Another interesting
observation is that the modeled RSS decreases along a line
that spans from pl,RX = [4.82, 7.82] to p = [9.58, 2.84]. One
possible explanation is that the target creates a new multipath
component as discussed in the previous paragraph. In such a
case however, it is expected that the RSS would not remain
constant on the left side of the link but show similar changes
as GP1 predicts. Another possibility is that the target is altering
an existing multipath component. Considering that the primary
mechanism how a target can alter existing propagation paths



Fig. 2. The predicted RSS as a function of target’s Cartesian coordinates p = [x, y]⊤ using the exponential model and the proposed GP models.

is either diffraction or shadowing [15], the length scale of
kse,2(·, ·) should be set according to dimensions of the target.
In the experiments, we have used ℓ2 = 2λ which is roughly
the same length as an adult’s cross-section.

GP3 combines the covariance functions of the other two GP
models. The most notable difference with respect to GP2 is that
GP3 is able to capture symmetries along elliptic regions defined
by ∆l,p. As an example, if the person crosses the link line near
the RX and the signal attenuates, the part of the covariance
function modeled by kse,1(·, ·) will predict that the signal also
attenuates if the target crosses the link line near the TX. The
GP2 is unable to capture such symmetries and as illustrated in
Fig. 2, GP2 models the RSS to remain unchanged when the
target is very close to the TX located at pl,TX = [7.62, 0.00].
The kse,2(·, ·) covariance function could be easily modified to
account for axis-aligned reflective symmetry. However, it is
unlikely that perturbations of existing multipath components
experience such symmetries and it is better to use two distinct
covariance functions as in GP3.

The modeling errors are tabulated in Table I and we can
conclude the following: (i) the RSS is more difficult to
model in complex indoor environments since the RMSEs
are higher in the apartment experiment; (ii) with respect to
the parametric model, the GP models are able to explain the
measurements more accurately; (iii) GP2 and GP3 yield the
best overall performance revealing the importance of modeling
RSS changes that cannot be explained with simple link line or
single bounce geometry; (iv) the EM model generalizes slightly
better to data that is not used for training since the increase
in RMSE between hold-out validation and cross-validation is
lower.

C. Localization Results
The localization RMSE ± one standard deviation results are

presented in Table I and the Cramér-Rao bound (CRB) for the
discretized MLE in (15) is δx/

√
6 ≈ 10.2 cm [7]. In the open

environment experiment and when hold-out validation is used,
all models yield very good accuracy, in the range of 11.1−
−16.4 cm. The GP models outperform the benchmark model
and GP3 is the most accurate overall. Example localization
performance in the open environment experiment is illustrated
in Fig. 3a.

TABLE I
SUMMARY OF LOCALIZATION AND MODELING ERRORS

Experiment / Hold-out validation Cross-validation
Model ex [cm] ey [dB] ex [cm] ey [dB]

Open / EM 16.4± 7.6 1.7677 16.7± 8.1 1.7480
Open / GP1 12.4± 6.3 1.5860 12.9± 6.7 1.6525
Open / GP2 11.6± 5.4 1.4088 28.9± 23.9 1.5176
Open / GP3 11.1± 4.8 1.4023 12.8± 6.2 1.5001

Apt. / EM 106.0± 79.0 1.8404 110.0± 81.0 1.9862
Apt. / GP1 43.2± 32.2 1.6592 87.6± 77.2 1.8671
Apt. / GP2 14.5± 3.8 1.4793 15.4± 5.1 1.6657
Apt. / GP3 14.5± 3.6 1.4804 15.3± 4.6 1.6743

The performance of all models decrease when they are
trained using data from one trial and then tested using data
from another trial as indicated by the cross-validation results in
Table I. However, the degradation is moderate except for GP2,
for which the RMSE increases threefold. The CDF illustrated in
Fig. 3c reveals that P (ex ≤ 20 cm) are very similar for the GP
models, but GP2 has a considerable amount of estimates that
are very inaccurate. The highest localization error is 386.7 cm
for GP2 and only 36.7 cm for GP3. The culprit is that GP2
captures similarity only in a small neighbourhood of the training
points as already discussed in the previous section. In one of the
trials, one reference position is not visited during the training
phase leading to very inaccurate position estimates in that
reference position when test data of another trial is used. The
other models capture link line symmetries generalizing better
to scenarios that have incomplete training data.

It is well known in the RSS-based DFL community that
localization is significantly more challenging in cluttered indoor
environments as opposed to scenarios in which the TRXs
have line of sight (LOS) such as the one shown in Fig. 3a.
The apartment experiment brings forth the expressiveness and
advantage of the GP models as illustrated in Figs. 3b and 3c. In
the apartment experiment, ex = 106.0 cm for the benchmark
model, whereas ex = 14.5 cm for GP2 and GP3. It is important
to note that since ex = 43.2 cm for GP1, the benefit of data-
driven models does not stem from the ability to model link
line perturbations and new multipath components created by
the target. Instead, the true advantage comes from the ability
to model perturbations of existing multipath components. In
past model-based DFL works, fading loss Fl in (8) is generally



(a) Open environment (b) Apartment (c) Localization error CDFs

Fig. 3. Example localization performance in the open environment (a) and apartment (b) experiments, and the localization error CDFs of both experiments
shown in (c). In (a) and (b), the TRX locations illustrated with ( ), reference positions using ( ) and position estimates as: EM ( ), GP1 ( ), GP2 ( ) and
GP3 ( ). In (a) and (b), only one estimate per reference position is shown. In (c), the CDFs of the different models are illustrated using: EM ( ), GP1
( ) , GP2 ( ) and GP3 ( ).

treated as unwanted noise that degrades the system performance
[2], [7]. When the GP model uses the absolute position p as a
regressor, multipath fading can be turned from foe to friend.

Fig. 1 illustrates the predictive mean E[f(x∗)] of GP3 for
a single link and clearly, the largest RSS changes are not
observed when the target is on the link line. One possible
explanation for the model is the following. First note that
the signal strength is very low on average (−91 dBm) and
the link is considered to be in a deep fade that is caused by
destructive multipath interference [14]. One of the destructive
multipaths propagates from the TX through the open door and
then diffracts at the doorway towards the RX. When the target
blocks the destructive multipath component, the signal is not
received by the RX and as a result, the RSS increases by ten
decibels. This distinctive RSS change can then be used for
localization. The cluttered indoor environment has many similar
links for which the RSS measurements cannot be explained
using the exponential model nor any other analytical model.
Modeling the RSS using a GP captures such eccentric features
resulting in better localization accuracy especially in multipath
rich environments.

IV. CONCLUSION

The paper presented three GP models for RSS-based DFL,
and properties of the models were experimentally validated.
The best candidate for RSS-based DFL is the sum of three
covariance functions: 1st explains the received power when the
target is missing; 2nd models link line obstructions and new
multipath components created by the target; 3rd models target’s
impact on existing multipath components. The experimental
evaluation showed that compared to a commonly used paramet-
ric model, the proposed GP model had lower modeling error
and superior localization accuracy.
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