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Abstract. Photon-counting (PC) systems are the next technological generation of
medical computed tomography (CT) imaging and is being worked on by all major
system providers. CT devices that are based on PC detectors enable multi-energy
data collection. The information-content of this data can be used to obtain more
detailed patient data, which improves the quality of reconstructions, compared to
conventional detector systems. However, PC CT systems are subject to radiation
scatter as just as any other imaging systems is. Conventionally anti-scatter grids
(ASG) are used to reduce the scatter effect. These are however an imperfect solution,
especially for PC detectors. In this work, a software-based scatter correction method,
thus a virtual ASG is proposed. The method is tailoring a new statistical model
in the measurement space and combining it with the statistical inversion method
called Markov chain Monte Carlo (MCMC). The method can recover the measurement
data from dense projections. We present the method on simulated data of a single
photon emission computed tomography (SPECT) problem for which only under-
sampled data is available. However, our approach can in principle be generalised
to CT, PC-CT, Positron emission tomography (PET), radiotherapy, or even digital
radiography problems. The results show that the proposed model performs similarly
as physical ASGs and for cases where ASGs are not possible. The model further offers
a significant improvement in the quality of the reconstruction image compared to the
image reconstruction from original under-sampled data.

1. Introduction

Photon-counting (PC) computed tomography (CT) is favoured as the next step for
clinical tomographic medical imaging and is being developed by major system providers,
e.g. [1, 2, 3, 4], with recent FDA approval of the first PC systems for clinical usage [5].
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In PC-CT, the energy of an incoming photon is evaluated on a per quanta basis, allowing
to construct the spectrum of the images object by using several energy thresholds. This
is also referred to as multi-energy CT [6, 7]. In contrast to conventional CT, the PC-CT
offers several advantages. For example, increased contrast between different soft tissues,
quantitative CT images using well-defined energies, K-edge contrast and reduced patient
dose, if high-Z materials are being used [8, 9, 10, 11].

PC-CT however, faces a similar complication as other radiographic methods do,
the inherent problem of radiation scattering. This is a physical process that inevitably
occurs on all structures that the radiation is passing. In particular the patient and
the detector itself. Furthermore, scatter effects are dependent on materials and atomic
numbers of the elements involved [12]. From a detector point of view, the scattering
of photons reduces the number of photons that travel in a direct path to the detector,
while increases the number of photons that deviated from this direct path. For PC
devices, additionally the energy of the direct path photons changes. As a consequence
the image contrast is reduced. Anti-scatter grids (ASGs) or collimators (depending on
the detector type and application) reduce this effect, by removing some of the deviated
photons. This increases the relative contrast of the signal coming from the primary beam
path. ASGs and collimators are however imperfect solutions, because a compensation
for the removed photons is required, not all scattered photons can be removed and some
of the remaining primary beam photons still have a changed energy spectrum. Even
with dedicated ASGs, the amount of scattered radiation in CT is still around 17% [13]
and about 21% in cone beam breast CT [14]. This is in addition to higher patient
exposure, to compensate for the removed photons. Another downside of anti-scatter
grids is their increasing cost-ineffectiveness, with decreasing pixel sizes. As the precise
manufacture and assembly of expensive materials such as copper or tungsten is a tedious
task [15] and effective scattered photon removal becomes more challenging with thinner
wall thicknesses, that is required at small pixel sizes. A way to avoid these downsides,
is to transfer the ASG functionality from the physical device into the (virtual) data
space. Previous work of virtual scatter correction and kernel parametrization have been
proposed for example by Ruhrnschopf et al. [16, 17] as and Star et al. [18, 19]. Those
corrections however, are based on either time consuming Monte Carlo simulations [20]
or methods that ignore the target’s true geometry, such as kernel-based methods. The
later rely on the smoothness of the scattered intensity. Even though, fast methods
have been presented that improve contrast to a degree, they are inherently non-optimal
solutions, as the scattered intensity is depending on the target and suffers in computing
of the forward model, during reconstruction [19]. Additionally, the removed scattered
radiation still needs to be compensated through higher photon flux and therefor patient
dose.

Even though, the first PC-CT systems are now approved, the data availability
is still rare [1, 2]. Thus, only a few studies have been performed on multi-scattering
correction in PC-CT [21, 22]. Hence, there is room to investigate and develop the field of
multi-scatter correcting for PC-CTs, in order to improve the contrast-to-noise ratios of
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patient imaging [23]. A computationally fast and adaptive model that takes advantage of
the additional informational dimension of PC detectors would be the preferred solution
[17, 24, 25].

The problem of photon scatter and the subsequent image degradation is not limited
to CT imaging only. For example, beam and patient positioning are essential for
radiation therapies [26]. Although, direct patient dose is less of a concern for radiation
therapies, the radiation scatter induced dose however is. The higher intensities of the
radiation therapies create substantially larger amount of photon scatter, which in turn
will affects dose or positioning calculations. An experimental therapy that requires dose
calculations for its breakthrough is the Boron Neutron Capture Therapy (BNCT), which
intends to use a Single Photon Emission Computed Tomography (SPECT) imaging
geometry, to obtain tumor dose and therapy plan information. In this work, we focus on
scatter correction in BNCT-SPECT problems. The presented corrections however, can
be applied to other radiographic and radiotherapeutic methods as well, provided a PC
detector is used. Unfortunately, specialized PC detectors for BNCT-SPECT do not exist
yet either. However, various research groups are working on prototypes [27, 28, 29, 30].
These groups produce representative simulated data that can be utilized for the purpose
of this paper.

In this work, we perform image reconstructions and a background substraction to
reduce the scattering phenomena. We use analytical Radon transforms of ellipses to
form the tomography model, in particular we model the PC-CT measurement of the
Boron/tumor shape using a collection of ellipses. The parameters of this model are
statistically estimated using Markov chain Monte Carlo [31, 32]. Various statistical
methods have been previously developed and implemented in standard CT imaging
[31, 33, 34]. In this paper, we combine our statistical model with PC-SPECT data
(representing PC-CT data) using MCMC as a scattering correction method, with the
aim to recover dense and full data sets from limited projections.

1.1. Boron Neutron Capture Therapy

Boron neutron capture therapy (BNCT) is a binary radiography for certain malignant
tumors, especially in the head and neck region [35]. It has been evaluated since in
various clinical trials e.g. by Savolainen et al. [36] or Barth et al. [37]. In order for this
therapy to gain general acceptance, real time patient dose calculations are required [30].
The most favoured approach to perform this, is prompt-gamma (PG) imaging of the
boron neutron capture reaction, which creates the therapeutic effect [30]. PG imaging
in BNCT is in principle similar to SPECT [38, 39] and is therefor called BNCT-SPECT
[40]. The main complication is that the PG signal that allows to determine the dose,
is small compared to the background signal [40]. This further complicates the inherent
scatter problem of the SPECT like setup.

The main difficulty of PG imaging in BNCT is the small signal amplitude in
comparison to the background and neutron induced background [30]. Integrated signal
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count-rates of a few 10s of counts per second (cps) can be expected by typical 10B
concentrations of approximately 50 ppm during the therapy. The PG from the boron
neutron capture reaction (BNC) are emitted isotropic. Thus, the number of photons
reaching a detector, which can only cover a portion of the solid angle is small compared
to the approximately 107 neutrons/ cm2s, that are also reaching a detector at the
same time [30]. In addition to this main difficulty, is the PG signal from the BNC
reaction also affected by scattering. From the imaging point of view, is the already
small signal contrast further reduced by scatter effects. ASGs, or collimators are non-
feasible solutions in BNCT-SPECT, due to the small signal amplitude and the additional
secondary scatter effects that are caused by the ASG itself, when interacting with the
neutron field. The latter can cause significant additional out of tumor dose to the
patient.

Fortunately, the neutron background can also be used for the patient dose
calculations as proposed in [41]. In this case, no neutron ASGs would be required. These
however are complex and bulky structures, which are unfeasible for patient imaging
devices and create yet again additional patient dose. Therefore, neutron ASGs are not
feasible for the therapy. BNCT-SPECT was chosen as an example to present our virtual
ASG solution as it allows to demonstrate the functionality on both photon and particle
(here neutron) data simultaneously.

2. Parameter estimation for BNCT-SPECT problem

In this section the aim is to describe our approach to solve the scatter problem, which
is based on modeling the object using simple circular primitives in order to make
computations tractable. This requires a parameter estimation of the relevant variables
as well as various simplification, which are described in this section.

2.1. Measurement model

For the described problem, we use the number of the BNC reaction photons, as registered
by the detector and after background subtraction. In detail, the detector registers a full
beam spectrum in each pixel and all but the 478 keV photons are removed from the
spectra of each pixel, which is essentially a digital spectral filter. The remaining data can
be considered to be virtual monochromatic. Scatter effects cause a Gaussian distribution
of the 478 keV photons around the center of the boron target, which is registered
accordingly by the detector pixels. The full beam spectrum consists of the primary
beam photon spectrum, secondary photons from neutron interactions in the phantom
and the detector, as well as inelastic scattered photons. A schematic representation of
the setup, the full beam spectrum with the BNC signal is presented in Figure 1 and
Figure 2. Details about the phantom and the tumor insert have been described in [30].
The usage of a PC detector is a key property to make our approach possible. It enables
digital filters, to extract the signal of interest from the spectrum of each pixel (BNC
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reaction peak at 478 keV), without interference from neighbouring peaks such as the
annihilation peak at 511 keV. Our goal is to estimate the location and distribution of
the BNC signal a patient or patient phantom. In context of this problem, we model the
tumor and the BNC distributions to be circles or ellipses. Thus we will represent the
reconstruction of the tumor images in terms of ellipses as well. The term boron will be
used as synonym for BNC signal or boron signal within this work.

Figure 1. The setup that has been simulated. Left: detector with ASG grid, Center:
phantom with tumor insert and arrow indicating rotation.
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Figure 2. Full spectrum that was simulated for the various setups in this work. A
spectrum as this was received in every pixel. The peak number 2*) is the BNC signal,
whilst the rest of the spectrum is considered background signal.

We can compute the Radon transform of an ellipse in closed form. Consider an
ellipse v with center at (xc, yc) with major axis a and minor axis b with angle ϕ. Assume
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that the ellipse has only one attenuation value g (a homogeneous ellipse). This case
represents a single primary tumor in a patient and is a simplified case of the therapy.
Analytically, the Radon transform Rr,θ for this ellipse at given p′ and θ is written in a
closed form following a similar calculation in [42]:

Rr,θv = gLr,θv, (1)

where

Lr,θv = 2a
ζ

ξ
,

ζ2 = a2 + b2 + cos4(θ − ϕ) + b4 sin4(θ − ϕ)− b2d2,

+ b2(a2 + b2) sin(θ − ϕ) cos2(θ − ϕ),

ξ = a2 + cos2(θ − ϕ) + b2 sin2(θ − ϕ), (2)

d = −r + xc cos(θ)− yc sin(θ).

For an ellipse v, Lr,θv represents the length between two points where the Radon
line parameterized with r, θ intersect the ellipse with attenuation value g.

We will assume that the image, which in this case is the the boron distribution,
for simplicity in the computational algorithm, only has one circle as written in (3) such
that

ζ2 = 2a2 + cos4(θ − ϕ) + a4 sin4(θ − ϕ)− a2d2,

+ 2a4 sin(θ − ϕ) cos2(θ − ϕ),

ξ = a2 + cos2(θ − ϕ) + a2 sin2(θ − ϕ), (3)

d = −r + xc cos(θ)− yc sin(θ).

and the parameter ϕ is fixed. This is based on the assumption that the BNC reaction
occurs mainly in the tumor area, in which the concentration of the radiopharmaceutical
is highest during the therapy. However, the proposed model can be applied for different
shape of tumor by approximating it using several ellipses which means more parameters
are required.

2.2. Statistical model

In this work, we use a statistical model to estimate the parameters in (3) [43, 34]. The
measurement of the boron distribution can be modelled as follows:

m = Rr,θv + ε, (4)

where ε is the measurement noise and it is normal distributed ε ∝ N (0, σ2
εI), where I

is an identity matrix. In this discussion, we consider a linear measurement model with
additive Gaussian errors.
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The likelihood function corresponding to (4) is:

p(m|xc, yc, a, b, g) ∝ exp

(
− 1

2σ2
i

∥Rr,θv −m∥2
)
, (5)

where m is the pre-processed measurement data which will be discussed in Section 2.3.
Since we assume that the tumor is only a circle, then parameter a equals to b.

Hence, the posterior distribution of parameters can now be written as follows:

p(xc, yc, a, g|m) ∝ p(m|xc, yc, a, g)p(xc)p(yc)p(a)p(g), (6)

where a Gaussian prior for each parameter is used. In this article we use a Markov
chain Monte Carlo (MCMC) method is to estimate the parameters. MCMC is one of
the most popular techniques for sampling from probability distributions, and is based on
the construction of a Markov chain that has the desired distribution as its equilibrium
distribution [31]. The basics idea of Monte Carlo integration is to generate samples
X = {x(ℓ)

c , y
(ℓ)
c , a(ℓ), g(ℓ) : ℓ = 1, . . . , L} from p(xc, yc, a, g|m) [31, 32]. The goal is to

estimate parameters xc, yc, a, and g in order to recover the limited measurement data
to be complete data sets from dense angles. The Metropolis–Hastings algorithm (see,
e.g., [32]) is employed to sample from the posterior distribution (6). The algorithm for
sampling the vectors x = (xc, yc, a, g) has the following steps:

(i) Initialize value x(ℓ) ∈ R4, and set ℓ = 1.
(ii) Draw y ∈ R4 from a proposal distribution q(x(ℓ),y) and calculate the acceptance

ratio

α(x(ℓ),y) = min
{
1,

p(y)q(y,x(ℓ))

p(x(ℓ))q(x(ℓ),y)

}
.

(iii) Draw t ∈ [0, 1] from uniform probability density.
(iv) If α(x(ℓ),y) ≥ t, accept the candidate by setting x(ℓ+1) = y, else x(ℓ+1) = x(ℓ).
(v) If ℓ = L (number of iterations) then stop, else set ℓ = ℓ+ 1 and return to step 2.

We use a point estimate, that is a conditional mean (CM) estimate for parameters
x, and it can be written as follows:

xCM ≈ 1

L̃

L0+L̃∑

ℓ=L0+1

x(ℓ), (7)

where the first L0 samples (the burn-in) are discarded.

2.3. Data sets pre-processing

In this work, the focus is on the BNCT-SPECT problem, with data collected on a head-
phantom. The main interest lays in observing the BNC signal that originates from the
tumor inside the phantom. However, the signal coming from the phantom contains both
BNC and a wide spectrum of other signals. The latter is in this work referred to as
background signal. Henceforth, a background subtraction is required and it is carried
out as follows:
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(i) A phantom which represents a patient’s head is imaged once. It is then referred to as
background data. During therapy this could be obtained through a prior (PC) CT
scan. Figure 1 and Figure 2 present the simulated geometry and an example spectra
that was received in each pixel. Details, such as size and material of the phantom
and tumor insert have been reported earlier [30]. The peaks number 2*) and 5) are
the BNC and CdNC signals, respectively and are extracted from the spectra of each
pixel. The rest of the spectra of each pixel is considered background in this work.
Such spectra, albeit significantly lower energy resolution, can be obtained by photon
counting CTs, or CBCTs. For radiation therapies, this data could be obtained with
the kV or MV imaging systems that are used for scouting and verification of the
therapy status, provided that the detectors of these systems are PC detectors with
an energy resolution per pixel similar to what is presented in this work. These
imaging systems also in sparse imaging mode, which is a scenario similar to what
is presented here.

(ii) A tumor insert is placed in the phantom and projection data is collected. This
represents the imaging data collected during the therapy. In this meaning, for each
scenario presented in this work, two data sets were simulated. With the difference
that one of them had a tumor insert (blue circle on the right side of Figure 1) and
the other one did not.

(iii) The data sets obtained in step (i) are subtracted with a scaling factor from the
image data of step (ii). The factor compensates the image intensity differences
between the CT scan and the BNCT-SPECT data. For this work, the scaling
factor is found empirically. In future work, this factor should be obtained based on
reliable references, this however requires dedicated research and is left out of the
scope from this work. One option would be to use peaks of the spectrum that are
not related to the reactions in the phantom or the tumor inserts, for example. The
peak at approximately 250 keV in Figure 2 could be a candidate.

(iv) The BNC signal is extracted from the data set by digital filtering. Thus, selecting
the energy bin of the PC detector that is set around the BNC reaction peak.

The discussion of this work focuses on the application of the presented algorithm
to the data sets obtained from step (iv).

3. Experimental description

3.1. Data generation

Our simulated experimental setup consists of a poly methyl-methacrylate (PMMA)
phantom, that is representing a patient’s head. A circle shaped tumor inserts are added
to the phantom as it is shown in Figures 1 and 3. The simulations were performed in
MCNP5 version 1.4, the epithermal neutron beam model of FiR 1 described by Seppälä
[44] and the nuclear data library TENDL-2008-ACE, provided by the Nuclear Energy
Agency [45] were used [46]. The phantom is imaged with a PC line detector in 32 angles,
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covering a full rotation. The imaging process of the phantom with the tumor insert takes
place during the irradiation and represents the real time imaging of the patient tumor
during the therapy session.

The PC detector consists of 42 pixels, each recording a full spectrum between 100
and 800 keV and with an energy resolution of approximately 6 keV at 662 keV (1%, 137Cs
calibration reference), as reported in [30]. The pixels are modelled as natural CdTe
crystals of 3 x 3 x 1 mm3 size. At this thickness, the detector can provide reasonable
statistics of a few 10s of counts, up until 800 keV, while being transparent to higher
energetic photons, as described in [41] and [30]. Furthermore, the simulated data is
corrupted by scattering processes and the sparse rotational angle problem (only 32
rotations, each 11.25◦ apart). With this condition, several data sets were simulated to
evaluate the effect of our spectral reconstruction algorithm. For the first set (ASG), a
detector with pixels separated by 3 x 22mm2 lead (Pb) walls was simulated, as presented
in Figures 1. These were removed for the second data set (non − ASG). Finally, the
third data set (noise−test) is similar to the second one, however the BNC (and neutron)
signal strengths were reduced to the noise floor of the background data set. We use this
third data set to check if the algorithm will fail, if the input data has no feasible signal to
reconstruct. Since each data set contains a full set of spectra for each pixel, the neutron
signal can be extracted with the same processes as the boron signal, albeit at a different
energy (558 keV, peak number 5) of Figures 2). The process has been described in [41].
The signal type used for each data set is indicated by the subscripts BNC and CdNC

for the boron and neutron signal, respectively. In all cases simulations were performed
until the statistical variance reached 5% or less and a Hamming filter was used for all
FPBs reported in this work. The tumor insert (yellow circle) of Figure 3 presents the
ground truth that we intend to reconstruct. The corresponding sinogram and FBP, are
a single sinewave and a circle of the size and position as the yellow insert. We refrain
from presenting sinogram and FBP of the tumor insert here, however Figure 5(a) and
(c), principally depict the ground truth dataset.

4. Results and Discussion

4.1. Boron signal reconstruction

In this work, the proposed parameter estimation method is implemented to compute the
reconstruction image from the BNC signal, i.e. SPECT data sets or sinogram of photons
that are captured by the detector, originating from the BNC reaction. The subtraction of
the backgrund signal is carried out during pre-processing of the sinograms and we assume
that the boron in the tumor is distributed homogeneously over one small area only. Thus,
it will correspond to a single sine curve-like shape in the sinogram. However, in this
problem we deal with under-sampled data sets, particularly, only limited angle data sets
are available [43]. This occurs in addition, to the sparse distribution of data set itself.
Data sets recorded of such cases are only a part of a ‘sine-curve’ as shown in Figure 4(a).
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Figure 3. PMMA phantom to represent a patient’s head with a tumor inserted.

Furthermore, the under-sampled signal is broadened by photon scattering. Figure 4(c)
illustrates this with a blurred and boarder partial sine curve, spanning approximately
12 projection angles. This scatter broadened signal shows furthermore higher intensities
(maximum signal value in a.u.) than the non-broadened signal, see Figure 4(c) versus
(a), where the yellow signal spans approximately 12 projection angles. This difference
originated from the removed photons by the ASG (Pb walls). The corresponding FBP
are presented in the panels (b) and (d) of Figure 4. Please note that maximum intensity
of the FBP is lower for the non−ASGBNC data set, despite the signal being larger than
for the ASGBNC data set. Furthermore, please note that the image size changes after
reconstruction by the FBP, leading do different number of pixels between singogram and
FBP images. Finally, the phantom (large green circle Figure 1, or large orange circle
Figure 3) is not visible in Figures 4, 5, 9 - 11 as the corresponding signals have been
filtered out during data pre-processing (see section 2.3).

The proposed method was then applied to both data sets, in order to recover
the dense projection data from the limited and sparse angle data sets and to reduce
the scatter effect. The result of the estimated sinogram and the corresponding FBP
reconstruction are presented in Figure 5(a) for the scatter free (ASGBNC) and scatter
distorted (non − ASGBNC) data sets Figure 5(c), respectively. It can be seen, that
the proposed method is able to recover the information from the missing projection
angles, resulting in a full recovered sinogram with dense angles. The method also
reduced the scatter effects significantly, by focusing the signal on approximately 7
projections angles only, Figure 5(c). The corresponding FBP (Figure 5(d)) present
a decent reconstruction of the recovered signals, which is in case of the ASGBNC data
set a significant improvement compared to Figure 4(d). The intensity has increases
for both sinograms, which can be attributed towards the more focused sinogram and
significantly reduced background. Finally, the completely recovered sinograms result in
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Figure 4. (a): Sinogram of the under-sampled boron signal (data set ASGBNC)
without scatter effects. (b): FBP of the sinogram in (a). (c): Sinogram of the under-
sampled boron signal with scatter effects (data set non−ASGBNC). (d): FBP of the
sinogram in (c). The FBP fails due to scatter distorted and incomplete data. Please
note that the phantom (large green circle Figure 1, or large orange circle Figure 3) is
not visible in these images, as the corresponding signals have been filtered out during
data pre-processing (see section ).

a focused and more intense FBPs. The reconstructed tumor (Figure 5(c)) does change
in size, compared to the reconstruction of Figure 5(d). This is due to the less focused
sinogram produced by the proposed method.

Table 1. The parameter estimates from data set ASGBNC which calculated using the
conditional mean. The SD values are also reported in parentheses.

Parameters xc (SD) yc (SD) a (SD) g (SD)
Value 0.293 (3.35.10−2) 0.290 (1.34.10−2) 0.085 (5.3.10−3) 5.47 (1.48)

The Metropolis–Hastings algorithm took 50 000 samples in total, while half of
samples were used for the burn-in period [32]. The MCMC samples are well-mixed
and marginal distributions of each parameters as they are presented in Figure 6 and 8.
It means the samples moves throughly the posterior distribution. It also follows by the
parameter estimated which calculated using the conditional mean as it is written in (7)
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Figure 5. (a): Reconstructed sinogram from scatter free BNC signals of data set
ASGBNC . (b): FBP of the reconstructed sinogram in (a). (c): Reconstructed sinogram
from scatter distorted BNC signals of data set non − ASGBNC . (d): FBP of the
reconstructed sinogram in (c), is successful due to scatter free and completed data.

Table 2. The parameter estimates from data set non − ASGBNC which calculated
using the conditional mean. The SD values are also reported in parentheses.

Parameters xc (SD) yc (SD) a (SD) g (SD)
Value 0.34 (1.9..10−2) 0.29 (1.8.10−2) 0.15 (3.1.10−3) 5.34 (0.44)

and reported in Table 2.
The proposed method took around 9 seconds to complete. It is computed using

MATLAB 2018a with 2,3 GHz Intel Core i5 in memory 8 GB. The computation time
of the proposed method can be considered as a fast algorithm even though MCMC is
applied. This is due to the parameterized model which can reduce the dimension of the
target of interest. In addition, the sinogram obtained by the proposed method is not
limited to the resolution image of the original data sets.

4.2. Reconstruction of the noise-test data set

The FBP of the noise − testBNC fails as expected, see Figure 9(a) and (b). A partial
sinogram is reconstructed from the noise data. Based on the input data this is not
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Figure 6. (a) and (b): Marginal distribution of parameter sample xc and yc for the
data set ASGBNC , after burn-in period, respectively.
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Figure 7. (a) and (b): The Markov chain Monte Carlo chains of xc and yc for the
data set ASGBNC

expected, however also not impossible. As the boron signal was reduced to the noise
floor. Thus, there is a possibility given, that a few projections contain a signal slightly
larger than the background that the algorithm was able to reconstruct, Figure 9(c).
Due to the partial sinogram and constant background of the reconstruction, the FBP
succeeds to construct an object at the tumor location. However, distorted and at
significant smaller size than the actual tumor insert. This leads to the hypothesis
that the algorithm blindly constructs a signal, even if there is none. This would be
devastating for an application such as the boron dose calculation for BNCT. When
inspecting the intensities of the input and reconstructed sinograms, it is obvious that
the noise − testBNC and the reconstruction signals are respectively 104 and 10 times
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Figure 8. (a) and (b): Marginal distribution of parameter sample a and g for the
data set ASGBNC , after burn-in period, respectively.

smaller than the corresponding non − ASGBNC signals. See panels (a) and (c) of
Figure 5 and Figure 9. A similar situation occurs for the FPBs, panels (b) and (d) of
the respected figures. This allows to use a simple threshold filter and abort the algorithm
if the reconstructed sinograms and FBPs are below a certain threshold. Arguably, more
sophisticated rejection algorithms can be used. These however go beyond the scope of
this work.

In summary we showed that the tumor image, based on the boron signal, is well
reconstructed and not dominated by artefacts as the limited angle and scatter distorted
non − ASGBNC image is. As the method proposed, the sinogram is reconstructed
so that it covers for all projection data. Applying the algorithm on a noise data set
(noise − testBNC) results in a partial sinogram reconstruction at considerably reduced
intensity. Such reconstructions can be rejected through thresholds or advanced rejection
algorithms.

The MCMC chains of xc and yc reported in Figure 7 seem to be mixing very well.
The convergence determined by visually looking at chain plots and also by Geweke’s
convergence diagnostic[47]. The Geweke’s statistics give result less than 0.0075 in an
absolute value term. It can also be seen in Figure 6 that all marginal distributions
are unimodal which indicate that the chain converge to the target distribution. In this
work, the computation time takes less than one minute. For complex structures that
need many ellipses and circles, the computation surely will take longer. The algorithm
can be sped-up by tuning the covariance function adaptively [48, 49].

4.3. Neutron signal and noise-test

From the algorithm point of view it does not matter what is the source of the signal, as
long as part of a sinogram present in the data. Therefore, we applied the algorithm to
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Figure 9. (a): Sinogram from noise − testBNC data with scatter distortion. (b):
FBP of the sinogram in (a). (c): Reconstruction of the sinogram in (a), a partial sine
curve is found. (d): FBP of the reconstructed sinogram in (c), succeeds to produce an
object at the tumor location.

the non−ASGCdNC data set. Please note that in case of the neutrons, the sinogram and
FBP of the raw signals is nearly identical for the ASGCdNC and non− ASGCdNC data
sets. This is caused by the negligible neutron scatter cross section of Pb. Hence, the
Pb walls that act as ASG for the photons, are transparent for neutrons. Nonetheless,
neutrons scatter heavily on selected elements such as hydrogen. Hydrogen being the
most common element, results in a heavily scatter distorted neutron signal by default.
The Figure 10 presents the sinograms and corresponding FBPs of the scatter distorted
neutron and reconstructed data (non− ASGCdNC set), respectively.

Table 1 and Table 2 shows that the conditional mean of xc, yc and g for ASGBNC

and non − ASGBNC are not significantly different. However, the estimated parameter
a for non − ASGBNC is almost twice as it in the ASGBNC . This is due to the scatter
distorted data sets. It is visible that the algorithm performs similarly as for the scatter
distorted photon data set. A full sinogram is produced and the FPB shows a tumor
target at the location of the actual tumor insert. The intensities of the sinograms are
approximately 5 times larger than the intensities of the corresponding boron images,
while the intensity of the FBP is approximately 3 times larger than the respected FBP
of the non−ASGBNC data set. Such larger intensities may allow to reconstruct a tumor
in BNCT, even if the boron signal is too small for a successful reconstruction. In such
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cases the neutron signal is expected to be still measurable, as described in [30].
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Figure 10. (a): Reconstructed sinogram from scatter distorted neutron signals of
data set non − ASGCdNC . (b): FBP of the reconstructed sinogram in (a). (c):
Reconstructed sinogram from data presented in (a). (d): FBP of the reconstructed
sinogram in (c), is successful due to scatter free and completed data.

We have performed the noise test for the non − ASGCdNC data set as well, in
case the neutron signal is also below the noise floor. Hence, an artificial but realistic
noise− testCdNC data set was created and the algorithm applied. The reconstruction is
presented in Figure 11) and produced similar results as for the noise− testBNC data set
(see Figure 9). The sinogram in Figure 11)(a) shows indication for a partial sine curve.
This might be the case for a real measurement, as the neutron signal is substantially
larger than the boron signal[30]. Nonetheless, the intensity is too low and coincidence
of noise signals cannot be ruled out. The FBP of the initial sinogram fails as expected,
see Figure 11(b) and the reconstruction of the sinogram still produces a partial since
curve (c). Finally, the FBP of the reconstructed sinogram produces an object again
at the tumor location, however at an intensity approximately 100 x smaller than the
object in Figure 10(d). Therefore, these results can also be rejected through a threshold
application.
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Figure 11. (a): Sinogram from noise − testCdNC data with scatter distortion.
An indication of a sine curve is visible. (b): FBP of the sinogram in (a). (c):
Reconstruction of the sinogram in (a), a nearly complete sine curve is found, which
is due to larger neutron signal, compared to the boron signal. (d): FBP of the
reconstructed sinogram in (c), succeeds to produce an object near the tumor location.
Albeit, too smaller and low intensity.

5. Conclusion

We have presented a scattering correction method for under-sampled data for photon-
counting systems using a statistical model combining with an MCMC-based parameter
estimation method. This approach is to approximate the anti-scatter grid functionality
for scattered distorted signals such as the photon and neutron signals in BNCT, if the
signals are digitally filtered as it is possible with spectral data obtained from photon-
counting detectors. The algorithm succeeded to reconstruct the signals at the correct
positions, despite an overwhelming noise background in each data set and acts as a
virtual anti-scatter grid. This allows to measure, even in difficult applications such as
BNCT-SPECT, essential signals without the need of anti-scatter grids. The algorithm
has also proven to be indifferent about the signal source, thus allowing it to be applied
a wide range of data or signals, as long as the data is presented in form of a numerical
array. With this work, we have shown to reproduce one object. The next step is to
test the algorithm on data that is to be collected at a real BNCT facility in Helsinki,
Finland as well as on data of multiple targets. Another outlook is to reconstruct an
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arbitrary shape of tumor by approximating it using several ellipses. In addition, adding
a scaling factor corresponds to the intensity value in the reconstructed image is possible
to conduct in the future.
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