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Reinforcement learning based transmission policies
for energy harvesting powered sensors

Ruslan Seifullaev, Steffi Knorn, Member, IEEE, Anders Ahlén, Senior Member, IEEE, and Roland Hostettler,
Member, IEEE

Abstract—We consider a sampled-data control system where a
wireless sensor transmits its measurements to a controller over
a communication channel. We assume that the sensor has a
harvesting element to extract energy from the environment and
store it in a rechargeable battery for future use. The harvested
energy is modelled as a first-order Markovian stochastic process
conditioned on a scenario parameter describing the harvest-
ing environment. The overall model can then be represented
as a Markov decision process, and a suitable transmission
policy providing both good control performance and efficient
energy consumption is designed using reinforcement learning
approaches. Finally, supervisory control is used to switch between
trained transmission policies depending on the current scenario.
Also, we provide a tool for estimating an unknown scenario
parameter based on measurements of harvested energy, as well
as detecting the time instants of scenario changes. The above
problem is solved based on Bayesian filtering and smoothing.

Index Terms—Energy-harvesting, communication networks,
Bayesian filtering, reinforcement learning

I. INTRODUCTION

His paper studies the possibility of using energy harvest-
T ing powered sensors in wireless communications and pro-
poses a design of suitable transmission policies from sensors
to a controller.

A. Motivation

Energy harvesting has gained increasing attention in recent
years due to its potential to reduce reliance on non-renewable
energy sources, improve the sustainability of various applica-
tions, and enable the development of self-powered devices and
systems, [1]—-[3]. Using harvesting-powered sensors in wireless
control systems has the advantage of replenishing energy used
for transmissions by extracting it from the environment. Un-
derstanding the models for energy harvesting is crucial for de-
signing and optimizing these systems. These models can help
to predict the energy harvesting potential of different sources,
and can also provide insights into the energy harvesting
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process, ensuring efficient and reliable energy collection and
storage. Moreover, knowledge of energy harvesting models is
also essential to design suitable transmission policies, which
can significantly reduce energy consumption and improve
network efficiency in wireless control systems.

B. Energy harvesting. Background

Energy harvesting is the process of capturing and converting
ambient energy from various sources into usable electrical
energy. This energy can then be used to power electronic
devices, e.g., wireless sensors, without the need for traditional
batteries or external power sources that can be costly or impos-
sible to replace. Among various harvesting architectures, the
most attractive is the harvest-store-used architecture, see [4],
which stores the harvested energy in a battery or capacitor for
later use. This architecture is commonly used in applications
that require a continuous power supply and where the energy
available from the environment is intermittent or unreliable.

Energy can be harvested from various sources, including

o Solar Energy. This is one of the most popular energy
sources for harvesting. It involves converting the light
energy into electrical energy using photovoltaic (PV)
cells, [5].

o Thermal Energy. This is the energy that results from
the temperature difference between two objects. It can
be harvested using thermoelectric generators (TEGs) that
convert heat into electrical energy, [6].

o Mechanical Energy. This energy can be harvested from
mechanical vibrations, such as those generated by ma-
chines or human movement. It can be converted into
electrical energy using piezoelectric materials, [7], [8].

e Radio Frequency (RF) Energy. This energy can be har-
vested from ambient RF signals, such as those from Wi-
Fi or cellular networks. It can be converted into electrical
energy using antennas and rectifiers, [9], [10].

o Wind Energy. This energy can be harvested using small
wind turbines that convert the kinetic energy from wind
into electrical energy, [11].

Once energy is harvested, it can be stored using different
storage technologies. One commonly used technology is the
rechargeable battery, which can store the harvested energy and
supply it when needed.

Since the energy source is unpredictable, we characterize
the harvested energy as a stochastic process using Markovian
processes, as traditionally done in the literature, see, e.g., [12]-



[14]. In [15], additional scenario parameters' were introduced
to cover the nonstationarity of the Markovian process. These
scenario modes are modeled as another stochastic process
and assumed to be slowly varying based on the harvesting
environment. Sometimes, scenario parameters strongly depend
on time, e.g., daylight or working hours, and can hence be
interpreted as deterministic and periodic, see [16]. However,
in many other cases, they are random, unknown, and have to
be estimated based on the measurements of harvested energy.

C. Contribution

In this paper, we consider a controlled dynamical nonlinear
system where the output is measured by a harvesting powered
sensor that transmits its measurements to a controller over a
fading channel [17], [18]. We assume that the sensor can send
data only at discrete time instants. If the transmission occurs,
then the sensor consumes a certain amount of energy depend-
ing on the channel conditions and updates the information
on the controller side. If the sensor decides not to transmit,
no energy is spent in that time instance, but the controller
must then hold the recent output value, which may worsen
the system performance. The goal of the transmission policy
is to minimize the total cost, which consists of the output error
penalty and the cost of energy consumption. For each fixed
scenario mode, the appropriate policy can be designed based
on a reinforcement learning (RL) approach that minimizes a
state-value function, see e.g. [19], [20]. Then a supervisory
control can be used to switch between policies based on the
current mode estimate.

The main contributions of this paper are as follows.

« We use Bayesian filtering and smoothing for estimating
unknown scenario parameters based on measurements of
harvested energy, as well as detecting the time instants
of scenario changes. For the latter, we also propose an
algorithm to reduce false detections, which uses mini-
mum mean square error (MMSE) estimates of the filter
posterior probability.

o We propose a heuristic algorithm that solves the problem
of adding a new mode to the scenario state space when
none of the existing modes fit the measured data properly.
In this case, the Jensen—Shannon divergence is used as a
measure of the distance between distributions.

« We investigate and compare the use of a dynamic pro-
gramming algorithm based on the solution of the Bellman
equation and a Q-learning algorithm to obtain a subop-
timal transmission policy by representing the complete
closed-loop system as a Markov decision process (MDP)
and designing an appropriate cost function.

« Finally, we illustrate the proposed approach by consider-
ing a numerical example of temperature control.

The rest of the paper is structured as follows. The problem
statement is formulated in Section II, where we describe the
models for the control system, the battery state, the energy-
harvesting process, and transmission energy based on the chan-
nel power gain. The main results of the Bayesian estimation

'We will also refer to these parameters as scenario modes or simply modes
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Fig. 1: Wireless Control System

of unknown scenario parameters are presented in Section III.
The reinforcement learning approach for transmission policy
design is described in Section IV. Section V provides a nu-
merical example demonstrating the efficiency of the proposed
approaches. The conclusions are given in Section VI.

II. PROBLEM FORMULATION

We consider a dynamical system given by a system of
ordinary differential equations (ODE)

0 p.um), v =, ()

with a state vector x(f) € IR, a control input u(t) € R™,
and an output y(f) € R™. Such a description is the most
common way to model real-life processes having their own
dynamics, e.g., mechanical, biological, chemical processes,
etc. We assume that the output is measured by a wireless
sensor that contains a rechargeable battery and an energy
harvester to collect energy from the environment, see Fig. 1.
Consider a periodic sequence fp4; = f + h k=012,...
where 7 > 0, and assume that the sensor can transmit its
measurements to the controller only at time instants 7;. We
also assume that an output-feedback sampled-data control is
designed such that the closed-loop system is exponentially
stable, i.e., there exists ﬁ_ > 1 such that for any solution x(¢)
with initial condition x(fo) the following inequality holds

le(D)ll5 < Be ) [lx(to) 15, ¥t = t0. 2

where @ > 0 is the convergence rate?. However, such a
transmission policy, where transmissions occur at every time
instants 7, may lead to high sensor energy consumption. In
this regard, to save energy, the sensor may decide not to
transmit at certain times f;. In that case, the controller holds
the most recently received measurement $(x), i.e.,

%), if mp =1,
§ny = {20 3)
y(tk_l), if Tk =O,

2For nonlinear sampled-data control systems x (1) = Ax(t)+@(rx(t),1)+
Bu(t),y(t) = Cx(t) with sector-bounded nonlinearities ¢, the conditions
guaranteeing (2) can be found in [21], [22].



where 7, € {0,1} indicates whether the transmission has
occurred (7 = 1) or not (mx = 0), and $(z_1) = 0. However,
the system performance can be degraded if 7 = O for some k.
Thus, it is reasonable to have a transmission policy that takes
into account both control accuracy and energy consumption.
A more detailed problem statement is given below.

A. Sensor battery model

Since the transmissions over a communication channel may
occur only at discrete instants ¢, we model the battery level,
By, as a process over discrete time k given by

By = min {By_ + Hy - Tx—1, B}, “)

where Hj denotes the energy harvested by the sensor at time
slot k, i.e., during the interval [fx_1, ), Ty is the energy used
by the sensor at time #;, and B is the battery capacity, see [23],
[24]. The models for the harvested and transmitted energy will
be described below.

B. Harvesting energy

Consider a discrete set H = {x1,...,%n}, where 21 > 0
and »; —x%;_1 =A >0 forall i =2,...,N, and suppose that
the values of H; come from 9H. We assume that the harvested
energy Hj is a first-order Markovian stochastic process over
discrete time k conditioned on a scenario mode Si. In [15]
it was proposed to interpret Sy as another stochastic process,
where the values of S were long-term, slowly-varying pa-
rameters depending on the harvesting environment. We assume
that S comes from a discrete set {1, 2, ..., M}. Then the joint
probability mass function (pmf) of Hy.x = [Hy,...,Hk] and
S1.xk = [S1,...,5k] given Hy and Sy can be factorized as

K
p (Hik,St:x | Ho, So) = l_[P (Hi | He-1,S1) p (Sk | Sk-1)

k=1

®)
where K can be sufficiently large. Suppose that n,,;; samples
are observed with Hy = x; given Hy_; = x%; and Sy = m
for k = 1,...,K. Also suppose that there are n..,, samples
observed where Sy = m given Sig_; = r. Then the unknown
model parameters p,;; = Pr(Hy = x| Hx—1 = »;, Sx = m)
and g;m = Pr(Sx = m|Sk-1 = r) can be estimated based
on empirical measurements, where the maximum likelihood
estimates are p, . ;= L , which form

Npni j . Ny
—anerm_ M

N ’
Z#:] Nmip

u=1"rp

the transition probability matrices T,, = [p:m. j], m=1,....M

and T' = [q},,]. see [16] for details.

As was stated in the introduction, in many cases, the
modes Sy are unknown and have to be estimated based on
the measurements of harvested energy. In Section III, we
will use the Bayesian filtering and smoothing technique for
estimating unknown scenario parameters, as well as detecting
the time instants of scenario changes. Formally, we consider
the following estimation problems.

Problem 1: Given the probability mass functions
p (Hy | Hi-1,Sk), p (Sk|Sk-1), and the initial distribution
p(So). The objective is to find the estimates Sy of Sy given
the measurements H;., for each k = 1,...,K, as well as to

detect the switching instants n; (i = 1,2,...), i.e., the times
where Si changes its value.

Problem 2: If none of the existing scenario modes m €
{1,..., M} fits the observed data properly, we have to decide
whether to add a new mode M + 1 to the scenario state space.

C. Transmission energy

Finally, we will propose a model for the transmission energy
Ty that the sensor consumes to transmit a packet over the
communication channel at time ¢;. We consider the case when
the required energy is inversely proportional to the channel
gain g, and assume that g is an i.i.d. process described by a
distribution pg4(z), where z is the continuous received signal
strength (RSS) in dBm. In industrial environments, the most
suitable distribution that characterizes the radio channel power
gain over long time horizons is the compound distribution

pe(z] &) = / pr(z—v] i) po(v| Ty, (6)

00

where p; and pg are the dB-representations of the Gamma
distribution with the parameter /i (Nakagami-m fading param-
eter) and the Lognormal distribution with standard deviation
7, respectively, see [17], [18]. Assume that the RSS measure-
ments are obtained from a coarse quantizer (see [25]) with
some fixed resolution, and ¢, is the probability mass function
corresponding to (6). Thus, we consider the following discrete
model for the channel gain: g ~ g,. Hence, the transmission
energy Ty that is used by the sensor at time #; is given by

Cg .

Pyt f = 17

T= {8 DT %
0, if 1, =0,

where ¢, is some fixed scaling parameter.

D. Transmission policy

Consider a sequence of actions (decisions)

a={ap,ai,az,...}, are{0,1},

where a; = 1 means that the sensor should transmit its mea-
surements to the controller at time 7;, and a;x = 0 indicates
that the measurements should not be transmitted such that the
controller must hold the old value of the output instead. Then
the sequence of actual transmissions, 7, is defined as

1, ifag=1 and By > <,
me={ 0 L% £ ®)
0, ifar=0 or Bk<g_i'

In other words, the transmission occurs if there is a decision
to transmit and the battery has enough energy for it.

The main goal of this paper is to find a suitable transmission
policy providing good control quality and, at the same time,
efficient energy consumption. More formally, we consider the
following cost function

B
= €ZA€k + Ty (l - Ek) s )

where ex = (yk = k), ye = y(tx), Jx = 9(tk), cc > 0 and
A is a positive definite weighting matrix. We can see that the



cost I consists of two terms: the output error penalty and the
cost for energy consumption. If 7 = 1, i.e., the transmission
occurs, the information on the controller side is updated, which
means that y; = yi, and hence the output error ey is zero’.
Then the cost comes only from energy usage*. And vice versa,
if . = 0, then Ty, = 0, see (7), and we get only the output error
penalty. The coefficient c, is a parameter defining the weight
between control accuracy and energy consumption. Therefore,
the problem can be formulated as follows.

Problem 3: For each fixed mode Sy =m (m=1,...,M), we

have to find a policy a,, that minimizes the total cost function
E [ZZ"ZI 6klk], where 6§ € (0, 1) is a discount factor.
This problem can be addressed using reinforcement learn-
ing (RL) approaches, as demonstrated in Section IV. Once
Problems 1-3 are solved, a supervisory control can be used
to switch between the designed policies depending on the
scenario mode changes.

III. SCENARIO PARAMETER ESTIMATION

To implement the supervisory control, i.e., switching be-
tween the policies, the mode S; has to be known for each
k. However, in many cases, Sy is unknown and has to be
estimated based on the measurements of harvested energy.
In this section, to address Problems 1 and 2, we will use
the Bayesian filtering and smoothing technique for estimating
unknown scenario modes, as well as detecting the time instants
of scenario changes.

The purpose of Bayesian filtering is to compute the pos-
terior probability mass function (pmf) of S; given Hj.
Consider the probability density functions p. (Si | Sx-1) and
pe (Hi | Hi-1, Si) obtained from the given pmfs p (Sg | Sk-1)
and p (Hy | Hx-1, Sk), respectively, using zero-order hold in-
terpolation, i.e.,

Pe (Sk|Sk—1) =p (m|r) = gy, (10)

where the indexes m,r € {1,..., M} are chosen from
Sxelm-1/2,m+1/2], Sg_1€[r-1/2,r+1/2].

If S, or Sx_; is outside the interval [1/2, M + 1/2], then
Pe (S| Sk-1) = 0. Note that the arguments of distributions
Pe (Sk | Sk-1) and p. (Hy | Hi-1, Si) are considered as con-
tinuous random variables. Similarly

(%) | 2, m) B pjnij

p
- (H, H_,S = 5
Pe (Hy | Hi—1, Sk) A A

(In

3Note that in traditional approaches to learning dynamical systems, there is
no assumption of nominal stability, and the learning goal includes designing
a stabilizing controller. As a result, the cost function typically includes a
standard quadratic term xZAxk that needs to be minimized. However, this
approach can significantly increase the size of the quantized state space
and lead to much higher computational complexity. Instead, in (9) we
use the quadratic difference between the output values on the sensor and
controller sides, i.e., eZAek = (ykx - )”)k)T A (yx — Ix)- Since the closed-loop
dynamical system is nominally stable, i.e., stable for 7y = 1, the reduction
of ey leads to a reduction of szxk as well. In particular, from (2) we can
conclude that from ey = 0 it follows that ||x(t)||§ < Be 261 || x; ||§ for
all t € [t, try1].

4Note that the term (1 — ) characterizes the “’price” of energy, which

depends on the state of the battery: if the battery level is low, then the price
is higher, and vice versa.

By

where the indexes i,j € {l,...,N}, m € {l,...,M}
are chosen from H; € [%j —-A/2,xj + A/Z], Hi_, €
[2¢; = AJ2,2; + AJ2], Sk € [m —1/2,m + 1/2]. Then the pos-
terior distribution can be calculated using the Bayesian recur-
sion [26]:

e prediction step:

pe (sk|H1;k_.>=/pc (St 1Sic1) pe (St | Hiaer) dSect,
(12)
e update step:

Pe (Sk|Hik) < pe (Hi | Hi—1,8k) pe (Sk | Hik—1) . (13)

Taking into account zero-order hold interpolation (10),
(11), we obtain that the corresponding posterior pmf is
p(Sk|Hi:k) = pe (Sk | Hi:x), for all S =1,..., M. Then the
maximum a posteriori (MAP) and minimum mean squared
error (MMSE) estimates are

M
§kMAP = max p(m|Hyyp), S,](V[MSE = Z mp(m | Hy.x).
m=1,....M m=1

The simplest solution to Problem 1 is Sk and n;y =
min {k >n;: .SA',’:IAP - 5,“ * O}. To reduce the number of false
detections (or false positives, i.e., switches to the wrong mode,
when the estimated mode differs from the current one) we
introduce the positive lag N, and consider the following rule:

— M AP
_Sk

nia = min k> g+ Ny o [SEAD = 5, # 0] &

k
A _ 1 A A
. MAP MAP MMSE
Slgn(sk‘Nfl_S"i)Nd+1, Z(Sk_Nd—Sj ) <& ¢,
J=k=Na
(14)
where &, > 0 is a threshold parameter. Then

S"i+] = ng—?\le{’ (15)

SjZSni for j:ni+l,...,n,~+1—l.

The idea is as follows: if the estimate obtained at k — Ny
differs from the current estimated mode §ni, then the point
k — N4 becomes a candidate to be a switching point with the
mode S ‘N Next, we consider the following Ny points and
calculate the average distance between the MMSE estimates at
these points and the candidate $ kM_ f]‘VZ . If this distance is small,
i.e., at the next points the estimate remains sufficiently close
to $ ,’("’_ f,‘vf; , we accept it as a new mode estimate. Otherwise, we
ignore it and continue detection. The parameters Ny and &,
are tuning parameters. The complete algorithm for the solution
to Problem 1 is summarized in Algorithm 1.

The Bayesian filter takes into account the measurements
acquired until the current step and is suitable for online estima-
tion. However, in certain cases, such as post-processing, it may
be feasible to leverage future measurements to obtain more
precise estimates through Bayesian smoothing. The backward

recursive equations for computing the smoothed distributions



Algorithm 1 Scenario estimation

Algorithm 2 Learning a new scenario

Input: pmfs p (Hy | Hi-1,Sk), p (Sk | Sk-1), and p(So); tun-
ing parameters Ny and &;;
Output: the estimates S; and the switching instants n;;
Initialization : Sy ~ p(So);
1: for k =1to K do
obtain §kM AP and §£” MSE from the Bayesian filter;
if the conditions in (14) are fulfilled then
update n;4; according to (14);

S, _ OMAP.
Sk - Sk*Nd’
Sk = Sn,»;

end if

2
3
4
5
6. else
; v
8
9: end for

p(Sk|Hi:ken,) for all k = K — Ng,...,1 are given by the
following Bayesian fixed-lag smoothing equations:

Pe (Sk | Hiken,) = pe (Sk | Hizk)

Pe (Sk+1|Sk)

— P (S H,. dSis1. (16
X./Pc (Sk+l|H1:k)p (Ske1 | Hizken, ) dSar. (16)

The corresponding MAP and MMSE estimates can be obtained
from the posterior p. (Sk | Hi:k+n,) similarly to the filter.

Now, we consider Problem 2. Without loss of generality,
assume that the scenario modes {1,..., M} are ordered in
order of increasing average harvested energy per slot. Since
immediate decisions of adding a new mode are not strictly
required, we can use smoother estimates to address this
problem. The following heuristic procedure can be proposed.
Starting from time k > N +T;, where T; > 0 , we analyze the
measurements Hy_n,-71,.x-n, and the corresponding scenario
estimates Six_n,-7,.x-n, obtained from the smoother with
the lag N,. Denote by pix-_n,-7,:k-n, the energy distribution
obtained from the data Hi_pn,_71,.x-n,. If there were more
than N switches of S, between consecutive modes m and
m + 1 on the interval [k — Ny — T, k — Ny], then we assume
that px_n,-7,:k-n, corresponds to a new scenario (between
m and m + 1). We add this new scenario to the existing set
{1,..., M} by assigning it the index m+1, and update the state
space accordingly by recoding any state that was previously
associated with mode m + 1 or higher and increment the mode
index by 1. On the other hand, if S; = M for almost all
j € [k = Ng — Ty, k — Ng], this may potentially mean that
Pk-N,-T,:k-N, corresponds to a new mode higher than M.
This can be verified by calculating a statistical distance from
Pk-N,-T,:k-N, to the distribution corresponding to mode M.
The above can be summarized in the following Algorithm 2
as a solution to Problem 2.

SWe consider Jensen-Shannon  divergence as a statistical
distance between two distributions Pj(x) and Pp(x) defined
as JSD(Pi[|P) = 3Dki(PilIPs) + 3Dki(P2||P3), where
Dxp(Pi||P2) = X Pi(x)log i;g; is Kullback-Leibler divergence

and P3(x) = 3 (P1(x) + Py(x)).

Input: pmfs p (H | Hk-1, Sk), p (Sk | Sk-1), and p(So); tun-
ing parameters N, Ts, N, v;
Output: updated scenario state space {1,..., Myew};
Initialization : So ~ p(Sp);
1: for k = Ny + T to K do
2:  obtain the estimates S} ?VI: TN,
smoother with the lag Ng;

from the Bayesian

3:  if number of switches > N then

4: add a new mode;

5: continue with k «— k + T

6: else

7: calculate the energy distribution px_n,-71,:k-n, and
distances to all known modes

8: if minimal distance > y then

9: add a new mode; train a new policy;

10: continue with k «— k + T

11: end if

12:  end if

13: end for

IV. REINFORCEMENT LEARNING BASED TRANSMISSION
POLICIES

In this section, we will apply dynamic programming for
transmission policy design. We can represent the complete
model as a Markov decision process (MDP), where an agent
interacts with the environment. At every time slot &, the agent
generates an action ai based on the current state s; received
from the environment. For our problem, the state s; can be
defined as follows:

Sk = [yz,ﬁ,l,Bk,Hk,gk]T .

For each fixed mode Sy = m (m = 1,..., M), the transition
probability matrices p,(Sk+1|Sk,ar) from s; to siy; under
action aj can be derived® from the models described in
Section II. Then the agent observes a cost /; (a reward in
the traditional formulation), which is defined by (9). Note
that s; contains the term j;_; instead of j; since the latter
depends on ay. To overcome this issue, we can rewrite the
first term in (9) as efAex = (yk — k)" A(yk — &) = (1 -
i) (v — 9k_1)TA(yk — 9%-1). Thus, the cost [} is properly
defined as a function of s; and ay, i.e.,

Ik = L(sg,ar) 2 (1= 7) vk = Fr-1)" A (v = $x-1)
B
+ CeTk (1 - g) .

Note that Ty and 7 are defined by (7) and (8), respectively,
and depend on si and ag.

The goal of the RL agent is to find a policy aj that
minimizes the total cost function E [220:1 6kL(sk,ak)], ie.,
solves Problem 3. Then a supervisory control can be used to
switch between the policies depending on the current scenario
mode, see Fig. 2.

an

®In order to facilitate numerical computation, we quantize the state space
of the dynamical system and the battery level state space, resulting in a final
MDP.
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A. DP policy

Under the assumption that the transition probabilities
Pm(Sk+1| Sk, ax) are known, a stationary optimal transmission
policy a,, can be computed offline using exact dynamic
programming and the Bellman optimality equation [27]-[29]

m = i 1
Vin(s)  mmin (18)

L(s,a)+6 ) pu(s'|s,a)Vn(s) |,

where V,, is the state-value function. A suboptimal solution
of (18) can be numerically found using dynamic programming
(DP), e.g., value iteration or policy iteration algorithms, see
ch. 4.4-4.5 in [20]. The corresponding stationary policy can
then be designed as

a,,(s) = argmin (19)

ae{0,1}

L(s, a)+6me(s I's,a)Vin(s)) |,

where V,,, constitutes the solution of (18).

B. Q-Learning based policy

Sometimes, it may not be possible to completely know the
transition probability matrix due to factors such as unavailable
or inaccurate system parameters, or unknown disturbances in
the models. In these cases, the optimal policy can be deter-
mined by minimizing a state-action value function, Q(sg, ax).
The Q-function is estimated through online experimentation in
the environment, using a trial-and-error method. In such cases,
the Q-function can be learned using the iterative algorithm
referred as Q-learning [19], [20]

O(sk,ax) < O(sk,ax)

) (20)
+ai(si,ax) |lxk+0 min_ Q(sky1,a) — Q(Sk, ax) | -
ac{0,1}

We will choose the action a; based on the epsilon-greedy
policy, which is a commonly used strategy in Q-learning. It is
used to balance exploration (trying new actions) and exploita-
tion (using known actions). In the epsilon-greedy policy, an
agent selects the best known action with probability 1—¢, and
selects a random action with probability e, i.e.,

random € {0, 1},

argmin Q (s, a),
ae{0,1}

with probability e,
210

k= with probability 1 — e

where € € [0, 1] determines the degree to which the agent
will explore the environment rather than relying on its cur-
rent knowledge. To guarantee convergence of the algorithm,
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Fig. 3: The energy distribution depending on the mode
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the learning rate ay(sg,ax) should be chosen such that
Yrak(s,a) = oo and ) ai(s, a) < co for all possible s and
a, [20], [30]. The latter guarantees that all state-action pairs
are visited infinitely often.

V. NUMERICAL EXAMPLE

In this section, we illustrate the obtained results by a numer-
ical example. We consider a simplified model of temperature
control in a room

T(t) = m(Te = T(0)) + 12(Tg = T(1)) +u(t),

where 7'(¢) is the temperature of the room, 7, and T, are the
outside and ground temperatures, respectively, n; and 7, are
the thermal conductivity coefficients, u(¢) is the control action
from the heat source. We consider the following sampled-data
feedback law

u(t) = ky(te) +m Ty = T.) + 2 (Ty — Ty),

where $(t;) = y(tx)mr+9(tx—1) (1—my) is defined from (3) and
(8), y(t) =T(t) — Ty, and T, is the desired room temperature.
We assume that the sensor sends its measurements to the
controller at time instants 4, and the control gain « and the
sampling step i = t;41—1; are chosen such that the closed-loop
system (22), (23) is exponentially stable for m; = 1.

Denote Yx = [yk, $x—1]T. Then after calculating the solu-
tions of (22), (23) at the sampling points, the resulting system
can be rewritten as follows

(22)

(23)

Yir1 =AY + AoYim + [wi, 0]7, (24)

where the additive Gaussian noise wi; ~ N(0,5) was added
n _ |7 -7 _
R A T
e"mrmh 5 - % Thus, after quantization of the state
space, together with (5)—(8) the model (24) can be represented
in terms of an MDP

to the model, and A; = [

Sk+1 ~ Pm(Sk+1!Sk> ax) (25)

for a given nTlode m € {I,...,
(Y. Bx, Hi, gi| -

M}, where s, =

A. Scenario parameter estimation

As was stated in Section IV, the scenario parameters Sy are
unknown and have to be estimated based on the measurements
of harvested energy. We design the energy distribution (5),
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Fig. 5: The estimates of the Bayesian smoother

i.e., the parameters [pfm. j], using the empirical measurements
of a real temperature sensor with a solar cell allowing har-
vesting of light energy’. We consider the following state
space H = {0, 10, ...,60} (units of energy). Without loss of
generality, we assume that we have six different scenarios,
ie., Sk € {l,...,6}, where the mode 1 corresponds to the
night period (no energy income) and the mode 6 corresponds
to a sunny day with the maximum harvesting. The energy
distribution depending on the mode is shown in Fig. 3. Since
the scenario parameters are slowly varying, we assume that Sy
has a quantized and truncated (on the interval [1,6]) Gaus-
sian distribution with the mean S;_; and standard deviation
o4 = 0.23 (Gaussian random walk). The estimates obtained
with the Bayesian filter and smoother (using all the data H.x)
are illustrated in Figs. 4 and 5, respectively. We can see that the
smoother gives considerably better results, hence, it is more
reasonable to use it for post-processing.

Next, we illustrate the performance of Algorithm 1. In Fig. 4
we can see that the filter estimates, §kM AP and .§kM MSE contain
false detections. Then we apply Algorithm 1 to obtain Sy with
& =03 and N4 =1 (Fig. 6) and N; = 5 (Fig. 7). Consider
the RMSE between the true mode S; and the estimates
Sk, ie., erms = \/% hp (Sk—S_k)z, and the number of
switches |n;|. We see that large N, reduces the number of
switches but increases the RMSE due to the lag. Thus, the
choice of the parameters Ny and &, in (14) is a trade-off
between the estimation error and the number of switches.

It was deployed over three consecutive working days in a typical office
building, where energy was harvested both from the sun and fluorescent light,
see [16]. During night periods, the sensor spends more energy than it harvests
since there is no solar light as well as no fluorescent light (the working day
has not yet started). During the day, the sensor can harvest light energy and
the battery is charging.

=== True mode

(i)

] ‘ i ‘
0 200 400 620 800 1000

Mode
w A
—

|

Fig. 6: Algorithm 1 with &, = 0.3 and Ng = 1, cf. (14).
Dashed vertical lines denote switching instants n;. The RMSE
erms = 0.4116, and the number of switches |n;| = 34
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Fig. 7: Algorithm 1 with &, = 0.3 and Ny =5, cf. (14). The
RMSE egrprs = 0.6042, and the number of switches |n;| = 24
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Fig. 9: Algorithm 2 with 75 = 50 and the threshold y = 0.1.
Unknown modes 4 and 6. The algorithm detects multiple
switches between modes 3 and 5, indicating that mode 4 needs
to be added. To learn mode 6, we use the Jensen—Shannon
divergence between py_s0 x and the distribution corresponding
to mode 5 on intervals where the estimated mode is maximum,
i.e., on [300,450] and [900, 1050]. The peak values at k = 400
and k = 1000 indicate that there is a higher mode (mode 6)
on [350,400] and [950, 1000]
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Fig. 10: Algorithms 1 and 2 with unknown modes 4 and 6.
At k = 300 we detect multiple switches between modes 3
and 5 on k € [200,250] and decide to learn mode 4. At
k = 450 we observe that on k € [350,400] the estimated mode
poorly fits the observed data implying a large Jensen—Shannon
divergence. We then learn mode 6 and add it to the state space.
We see that for k > 450 all the modes are estimated properly

We then introduce the following combined cost function:
ecomb = €rms + ¢ |n;|, where a balance constant ¢ defines
the trade-off. The dependence of e ,mp On the parameters Ny
and &, is illustrated in Fig. 8 for ¢ = 0.013, where the optimal
values are Ny =1 and &, = 0.3.

Finally, we consider Problem 2, which involves learning
a new mode, and show the performance of Algorithm 2.
We now assume that modes 4 and 6 are unknown, lim-
iting the scenario parameter estimate to values from the
set {1,2,3,5}. In Fig. 9 we can see many consecutive switches
between modes 3 and 5, suggesting the presence of a new
mode in between. Furthermore, in intervals where the actual
scenario is identified as S; = 6, the estimated mode is
§k = 5 (the highest known). To address this issue, we
compute the Jensen—Shannon divergence between pj_s0 , i.€.,
the energy distribution obtained from the data Hj 5.k, and the
distribution corresponding to mode 5. We observe that there is
an interval (around k£ = 400) where the distance exceeds the
threshold parameter y = 0.1, with the peak value occurring
at k = 400. This indicates that the measurements H3s¢.400
correspond to a larger mode that must be learned. We illustrate
the performance of Algorithms 1 and 2 in Fig. 10.

B. Transmission policies design

We consider the system (24) with the following parameters:
nm =017 =027T =T, =0°C, Ty = 22°C, « = -1.7,
h = 10 min, & = 0.01. To represent the model in terms of
MDP, we quantize the temperature state space as it is shown
in Fig. 11, where a more fine grained quantizer is used for
values close to the desired temperature 7. Also, we assume
that B = 1000 and the quantization step of the battery state
space is 20. Suppose that the values of transmission energy
comes from the set {5, 10, 15,20,25} (units of energy) with
the probabilities p = [0.0855,0.6180, 0.2592, 0.0338, 0.0035],
corresponding to the quantized compound distribution (6) with
m =1, & =4, and a resolution 10 dBm, see [16]. For each
mode r = 1,...,6, we implement the value iteration algorithm
to find a solution to the Bellman equation (18). We will refer
to this policy as the DP policy. In the algorithm, we used
0 =0.95, ¢, = 0.3, and the number of iterations was chosen
such that the updated values of V, differed from the previous

ones by no more than 1073, The projections of the obtained
DP policy to the Yi-axis are illustrated in Fig. 11 for different
modes r. We can see that the transmission policy is more
energy-saving for lower modes.

In Fig. 12, we compare the DP policy with random trans-
missions. The blue trajectories illustrate the temperature and
battery behavior for 8 = 0.5, where £ is the transmission prob-
ability. We can see that the control performance is appropriate
when the battery is not empty. However, due to high energy
consumption, there are periods when the battery is discharged,
and the controller information cannot be updated. If we
decrease S to 0.1 (the purple trajectories), this leads to fewer
transmissions and good battery behavior but simultaneously to
poor temperature control. The red trajectories illustrate the DP
policy. We can note that the battery usage is similar to 8 = 0.1,
which also means a similar number of total transmissions.
However, since these transmissions are used in an optimal way,
the temperature control performance remains suitable.

When implementing Q-learning, i.e., online learning, we
do not train the policy separately for each mode m, since a
majority of states s with low probability cannot be visited in
practice with a finite number of iterations. Instead, we allow
the algorithm to learn the system behavior under changing
modes (scenarios), where the main objective is to understand
how to conserve energy when harvesting is high in order to use
the saved energy for lower modes. In the algorithm (20)—(21),
we used 200000 iterations, € = 0.02, ai (s, a) = S where
N(s,q) is a number of visits of the state-action pair (s, a). The
results of Q-learning are illustrated in Fig. 13. We can see
that the battery behavior is similar or even slightly better than
for the DP policy® in Fig. 12. However, if we change the
switching algorithm of scenario modes or move the system
to another state which is unlearned by the Q-policy, then the
system behavior becomes poor and the learning process starts
almost from the beginning.

VI. CONCLUSIONS

We have applied the reinforcement learning approach to
design suitable transmission policies providing both good
control performance and efficient energy consumption. The
DP policy based on the solution of the Bellman equation
requires knowledge of the system model and a large number
of iterations since it consequently covers all elements from
the state space. However, it allows to train the policy offline
for all possible states and scenario modes, and then use a
supervisor to switch between the sub-policies according to
the mode change, making the DP policy more flexible and
versatile. If the system model is unknown, then the Q-learning
approach can be used, where we estimate the Q-function
through experimentation in the environment, i.e., by the trial-
and-error method. The Q-policy shows good results when
the system is run under normal circumstances. At the same
time, if the system state is placed in conditions under which
the algorithm has not been trained by experimentation, its

8The reason is that a finite number of iteration for the DP algorithm was
used as well as it was trained for each mode separately and did not take into
account the mode change model, which is unknown.
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Fig. 12: DP policy versus random policies. The colored areas
represent different modes, where a change from red to green
corresponds to a mode change from m = 1 to m = 6. Blue:
random policy with 50% transmission probability. Temperature
variance is 1.06. High energy consumption discharging the
battery (battery mean is 392). Purple: random policy with 10%
transmission probability. Good battery behavior (battery mean
is 904) and poor control accuracy (temperature variance is
4.26). Red: DP transmission policy. Both good battery behav-
ior (battery mean is 946) and control accuracy (temperature
variance is 0.28).

performance becomes poor, requiring a new learning process.
Therefore, the final choice of the appropriate policy depends
on the capabilities and requirements of the system.

We have also considered the Bayesian filter and smoother
technique for estimating unknown scenario parameters based
on measurements of harvested energy, as well as detecting
the time instants of scenario changes. We have introduced
Algorithm 1 reducing the number of false switches, which uses
MMSE estimates of the filter posterior probability. Finally,
we have also proposed a heuristic Algorithm 2 that solves
the problem of adding a new mode to the scenario state
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Fig. 13: Q-learning based transmission policy. Red: the system
is iterated from a learned state. The performance is similar to
one when using the DP policy. Blue: the system is iterated
from an unlearned state, resulting in performance degradation

space when none of the existing modes fit the measured data
properly. For the latter, the Jensen—Shannon divergence has
been used as a measure of the distance between distributions.

Future research directions may include investigating com-
binations of the proposed transmission policies with other
control-oriented policies that consider various network con-
straints and imperfections. Moreover, with the increasing
adoption of smart grids and Internet of Things devices, the
risk of cyber attacks on the power grid is becoming more
significant. Thus, addressing cybersecurity issues in energy-
based transmission policies and developing solutions to mit-
igate potential threats could also be a promising avenue for
future research.
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