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Abstract—One of the most fundamental problems in simulta-
neous localization and mapping (SLAM) is the ability to take into
account data association (DA) uncertainties. In this paper, this
problem is addressed by proposing a multi-hypotheses sampling
distribution for particle filtering-based SLAM algorithms. By
modeling the measurements and landmarks as random finite
sets, an importance density approximation that incorporates DA
uncertainties is derived. Then, a tractable Gaussian mixture
model approximation of the multi-hypotheses importance density
is proposed in which each mixture component represents a
different DA. Finally, an iterative method for approximating
the mixture components of the sampling distribution is utilized
and a partitioned update strategy is developed. Using synthetic
and experimental data, it is demonstrated that the proposed
importance density improves the accuracy and robustness of
landmark-based SLAM in cluttered scenarios over state-of-the-
art methods. At the same time, the partitioned update strategy
makes it possible to include multiple DA hypotheses in the
importance density approximation, leading to a favorable linear
complexity scaling, in terms of the number of landmarks in the
field-of-view.

Index Terms—Simultaneous localization and mapping, im-
portance density, particle filter, random finite set, probability
hypotheses density.

I. INTRODUCTION

FOLLOWING pioneering research in autonomous robotics
[1], the simultaneous localization and mapping (SLAM)

problem has gained widespread interest over the past decades,
with numerous applications ranging from mobile robotics [2]
to visual odometry [3]. In recursive probabilistic form, the
SLAM problem requires a robot to incrementally build a map
of the unknown environment, simultaneously localize itself
within the map, and estimate the related uncertainties [4].
There are numerous representations for the robot pose and
map, including landmark-based [1], [4], grid-based [5], [6] and
graph-based [7], [8] approaches. Landmark-based approaches
decompose the physical environmental landmarks such as trees
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and other obstacles into parametric representations such as a
point, which then form a map with an unknown number of
landmarks at unknown locations.

Solving the probabilistic SLAM problem requires propagat-
ing the joint posterior density of the robot trajectory and map
over time [4]. Furthermore, building the map requires the joint
estimation of both the number and location of landmarks that
have been covered by the sensor’s field-of-view (FOV). Con-
ventional SLAM solutions comprise of a three step approach
in which the measurement to landmark association is solved
first. Then, given the found data association (DA), the joint
posterior density is estimated using Bayesian filtering. Lastly,
a separate map management routine is required to create
landmarks that enter the sensor’s FOV and delete landmarks
that originate from false detections. Numerous works have
demonstrated that such an approach works well in practice
[9]–[11], but is sensitive to DA uncertainty [12]. To account
for data ambiguities in a theoretically sound manner requires
that DA uncertainty is treated as a part of the estimation
process. This can be done by modeling the map as a finite set
and using random finite set (RFS) theory for propagating the
joint posterior distribution in time [13]. RFS-based methods
are particularly attractive since they enable a fully integrated
Bayesian framework for SLAM since DA uncertainty is fac-
tored in to the estimation process, uncertainties on both the
number of landmarks in the map and their state are taken into
account, there is no ordering of the landmarks and the map
management routine is integrated in to the filtering recursion.
The RFS formulation for SLAM was first proposed in [14]
and a tractable first-order approximation coined as probability
hypothesis density (PHD)-SLAM filter soon followed [13].
Over the years, various approximations have been used to
model the landmark map resulting in various RFS-SLAM
filters including the labeled multi-Bernoulli (LMB)-SLAM
filter [15], δ-generalized LMB-SLAM filter [16], and the
Poisson multi-Bernoulli mixture (PMBM)-SLAM filter [17],
[18].

In terms of implementation and representation, many SLAM
algorithms take advantage of an important characteristic of the
SLAM problem: by conditioning the map to the robot’s trajec-
tory, the landmarks are conditionally independent [19], making
it natural to apply Rao-Blackwellized particle filter (RBPF)
solutions. Such a factored solution was adopted in FastSLAM,
which uses a particle filter (PF) to sample over robot paths and
each particle possesses numerous low-dimensional extended
Kalman filters (EKFs), one for each of the landmarks [11].
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The filtering recursion of PHD-SLAM is similar to that in
FastSLAM, but the use of RFS likelihoods effects how the
particle weights are computed and in addition, PHD filters are
used for mapping [13]. The standard PHD-SLAM algorithm
[13], similar to that of FastSLAM 1.0 [11], is a bootstrap
filter in which the dynamic model is used as the importance
density. If the robot motion is affected by large disturbances,
a large number of particles are required to adequately explore
the sample-space which can be computationally expensive.

In this work, we propose an improved importance density
in which poses are sampled under consideration of both the
motion of the robot and the measurements, as well as DA un-
certainty. To account for data ambiguities, a multi-hypotheses
importance density (MH-ID) approximation is derived and a
Gaussian mixture model (GMM) representation of the MH-ID
is proposed, in which each component of the Gaussian mixture
(GM) represents a single DA. The proposed Gaussian mixture
importance density (GM-ID) enables us to incorporate DA un-
certainty within the importance density approximation, rather
than assume that the most likely DA is correct as in [20]. Then,
for each GM component, we exploit an iterative method for
approximating parameters of the importance density, which
is based on using generalized statistical linear regression
(SLR), combined with iterated posterior linearization (IPL)
[21], [22]. The proposed solution exploits the measurement
model structure and uses partitioned updates, that is, the
importance density is updated one measurement at a time.
The partitioned algorithm scales linearly with the number of
landmarks M within the FOV, instead of O(M3) when using
a joint approximation approach as proposed in [20]. Using
synthetic and experimental data, it is demonstrated that the
proposed GM-ID improves the accuracy and robustness of
PHD-SLAM, while the partitioned update strategy makes it
possible to include multiple DA hypotheses in the importance
density approximation with low computational complexity.

The contributions of the paper are summarized below.
1) A novel GM-ID for probabilistic SLAM: A Gaussian

mixture proposal distribution is developed for PHD-
SLAM. In the proposed GM-ID, individual mixture
components represent different DAs to account for data
ambiguities in high clutter scenarios. The developed
GM-ID provides a new method for taking into account
DA uncertainty which allows developing more robust
and efficient versions of existing PHD-SLAM filters.

2) Low-complexity computation of a GM-ID approx-
imation: An iterative method for approximating the
mixture components of the GM-ID is utilized and a
partitioned update strategy is develop. The partitioned
importance density algorithm is computationally feasible
since it scales according to O(M).

3) Comparison against state-of-the-art: We validate the
development efforts using synthetic and experimental
data and compare the proposed algorithm to three
other PHD-SLAM filters. The results indicate that the
proposed GM-ID improves PHD-SLAM performance
allowing accurate, efficient and robust SLAM even in
high clutter scenarios. We provide Matlab code that runs
PHD-SLAM using the presented GM-ID approximation.

TABLE I
MAJOR NOTATIONS OF THE MANUSCRIPT

k Current time index.
xk Pose of the robot at time k.
uk Control input of the robot at time k.
f(xk−1,uk) Transition function of the robot.
Qk−1 Process noise covariance at time k − 1.
Mk Map at time k.
Mk Number of landmarks in Mk .
mi ith landmark in Mk .
Zk Set of measurements at time k.
Jk Number of measurements in Zk .
zj jth measurement in Zk .
g(Zk|Mk,xk) RFS likelihood.
g(zk|m,xk) Measurement likelihood.
Rk Measurement noise covariance.
λc Poisson rate.
c(z) Clutter intensity.
pD(m

i|xk) Detection probability.
ϕt,i
k Association variable.

xn
k nth particle of the PHD-SLAM density.

wn
k Weight of nth particle of the PHD-SLAM density.

N Number of particles.
vk(m|xn

0:k) PHD conditioned on the nth trajectory.
ηn,i
k Weight of the ith component of the GM-PHD.

m̂n,i
k Mean of the ith component of the GM-PHD.

Pn,i
k Covariance of the ith component of the GM-PHD.

Γ Number of GM-ID components.
γ̄t Weight of the tth GM-ID component.
µt Mean of the tth GM-ID component.
Σt Covariance of the tth GM-ID component.

In addition, we provide C/C++ source codes that can
be compiled to Matlab MEX-files to enable a highly
efficient implementation of the developed algorithm.1

The rest of the paper is organized as follows. In the
following section, the related work is presented. In Section III,
the probabilistic SLAM problem is formulated, the underlying
models are introduced and the Bayesian filtering recursion
of RFS-SLAM is presented. Section IV summarizes a first-
order solution to RFS-SLAM which utilizes an RBPF for
propagating the robot posterior and a GM-PHD filter for
estimating the map. The proposed GM-ID is introduced in
Section V, with Section VI presenting and discussing its per-
formance. Conclusions are drawn thereafter. Major notations
of the manuscript are tabulated in Table I.

II. RELATED WORK

In SLAM, non-Gaussian noise and unknown DA have been
the primary drivers for developing multi-hypotheses methods.
Particle filtering approaches, such as FastSLAM [11] and
RFS-SLAM [13], are able to approximate arbitrary proba-
bility distributions through a finite number of samples. In
FastSLAM, DA can be determined on a per-particle basis,
and hence different particles can be associated with different
landmarks which gives the filter the possibility of dealing
with the multi-hypotheses DA problem [23]. In contrast, PHD-
SLAM avoids explicit DAs and DA uncertainty is factored in
to the estimation process. More recent works have considered

1The code is available at: https://github.com/okaltiok/PHD-SLAM-3.0
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multi-hypotheses methods in the context of graphSLAM [24]–
[26]. In [24], a max-mixture Gaussian distribution is proposed
that can be used for example in implementing robust cost
functions to handle uncertain loop closures. Respectively, the
works in [25], [26] introduce methods for probabilistic DA.
The method in [25] considered probabilistic DA making use
of expectation-maximization (EM) whereas the work in [26]
uses a max-mixture Gaussian distribution similar to the work
in [24]. In this paper, a sum-mixture of Gaussians is used to
model the sampling distribution and each component of the
GM represents a single DA.

The aforementioned filtering approaches are typically re-
ferred to as online SLAM methods since they recursively
estimate the joint posterior density as new measurements be-
come available. On the contrary, smoothing approaches utilize
the entire data to estimate the full trajectory and a common
approach to solve the problem is using graphSLAM [7], [8]
which comprises of two tasks. The front-end task constructs
the graph using odometry and sensor measurements, and the
back-end task solves the optimization problem to determine
the best trajectory that satisfies constraints of the graph. The
graphSLAM algorithms typically exploit the sparse structure
of the problem to efficiently solve the optimization problem
[27]–[29]. Throughout this paper we focus on online SLAM
methods and therefore will only consider such approaches in
the following. The interested reader is referred to [30] for a
comparison between PHD-SLAM and graphSLAM in which
it is demonstrated that the RFS formulation can be beneficial
in scenarios in which DA is very challenging.

One major weakness of particle filtering based SLAM
solutions is the large number of particles required to propagate
the posterior accurately over time. The culprit is utilizing the
motion model as the proposal distribution which results to in-
efficient use of particles as most of them will have an insignif-
icant weight after the posterior update. The FastSLAM 2.0
algorithm addressed this issue by using an improved impor-
tance density in which poses are sampled under consideration
of both the motion of the robot and the measurements [31].
With known DA, the proposal distribution used in FastSLAM
2.0 is an approximation of the optimal importance density
(OID) which is optimal in terms of minimizing the variance
of the incremental particle weights [32]. Similarly, most PHD-
SLAM algorithms suffer from inefficient use of particles since
they use the transition density as the proposal distribution
[13], [33], [34]. Inspired by the FastSLAM 2.0 algorithm, two
recent works have proposed improved importance densities for
PHD-SLAM [20], [35]. In [35], the proposal distribution is
computed by conditioning the predictive distribution of the
robot state to the measurements independently and thereafter,
the independent conditional distributions are merged using
weighted averaging. On the other hand, the method in [20]
approximates the importance density by finding the joint
approximation of the robot and map first, and then by con-
ditioning on the measurements of the most likely DA. While
both methods improve the performance with respect to the
original PHD-SLAM algorithm, they still require quite many
particles to function properly. The proposal of [35] is very
conservative and numerous particles are needed to propagate

the posterior accurately, whereas [20] is sensitive to incorrect
DA and the filter requires many particles to handle data
ambiguities. In this work, we propose an improved importance
density in which poses are sampled under consideration of
both the motion of the robot and the measurements, as well
as DA uncertainty.

III. PROBLEM FORMULATION

Consider a mobile robot exploring an unknown environ-
ment. Its location and orientation at time k are described by
state vector, xk, and the movement is governed by motion
command uk. The robot is equipped with a sensor and
it is taking relative observations of a number of unknown
landmarks while moving in the environment. The ith landmark
is described by state vector, mi, and an observation of a
landmark is denoted as zjk. Since the robot is moving in
an uncharted environment, the number of landmarks within
the sensor’s FOV, denoted as FOV(xk), are unknown and
time-varying. Moreover, DA between the observations and
landmarks is unknown, clutter measurements can cause false
alarms and landmarks can be misdetected. Formulating the
problem using RFS theory enables a fully integrated Bayesian
framework for SLAM under DA uncertainty and unknown
landmark number [13]. The underlying models and the RFS-
SLAM algorithm are summarized in the following.

A. Models

A Gaussian density with zero-mean additive noise is a
common representation of the motion model in SLAM [4].
In addition, the state transition is assumed independent of
the landmarks and observations, and it is modeled as a
Markov process in which xk only depends on xk−1 and uk.
Mathematically, the transition model of the mobile robot can
be expressed as

f(xk|xk−1,uk) = N (xk; f(xk−1,uk),Qk−1), (1)

where f(·) denotes a known transition function and Qk−1 the
covariance.

Let Mk−1 denote the explored map up to time k− 1, then
the RFS transition density of the map is given by

f(Mk|Mk−1,xk) (2)

and the explored map evolves in time according to [36, eq. (7)]

Mk = Mk−1 ∪ Bk(xk), (3)

in which Bk(xk) is the birth RFS describing the set of
landmarks observed for the first time. Let Mc

k−1 denote the
complement of Mk−1 so that the newly detected landmarks
can be defined as Bk(xk) = FOV(xk)∩Mc

k−1. Essentially, the
RFS transition density of the map describes how the explored
map grows monotonically as the FOV of the robot’s sensor
covers more of the unexplored environment [36].

In this paper, we consider a point target measurement model,
where each landmark can create at most one observation per
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time instant. Then, the RFS likelihood function is obtained by
summing over all hypotheses [37, eq. (7.2)]

g(Zk|Mk,xk) =

Γall∑

t=1

exp(−λc)

|Zk|∏

j=1

c(zjk)

×
∏

i:ϕt,i
k =0

[
1− pD(m

i|xk)
] ∏

i:ϕt,i
k >0

pD(m
i|xk)g(z

ϕt,i
k

k |mi,xk)

c(z
ϕt,i
k

k )
.

(4)

In (4), Γall is the total number of hypotheses, ϕt,i
k is an

association variable, λc =
∫
c(z)dz is the Poisson rate, c(z)

the clutter intensity, pD(m
i|xk) ∈ [0, 1] the detection prob-

ability and g(·) the likelihood function. In SLAM literature,
the likelihood function is typically modeled as a zero-mean
Gaussian, given by [4]

g(zk|m,xk) = N (zk;g(m,xk),Rk), (5)

where g(m,xk) is a known measurement model and Rk

denotes the covariance. The association variable is defined as

ϕt,i
k =

{
j if mi is associated to zj ,

0 if mi is undetected.
(6)

B. RFS-SLAM

The objective of probabilistic SLAM is to estimate the joint
posterior density of the map and robot trajectory [4]

p(Mk,x1:k|Z1:k,u1:k,x0) (7)

given the initial pose of the robot, x0, measurements and
controls up to the current time instant k. The RFS-SLAM
filter follows the prediction and update steps of the Bayesian
filtering recursion applied with RFSs [13]. The prediction step
of the filter is given by [13, eq. (7)]

p(Mk,x1:k|Z1:k−1,u1:k,x0) = f(xk|xk−1,uk)

×
∫

f(Mk|Mk−1,xk)p(Mk−1,x1:k−1)δMk−1 (8)

where δMk−1 denotes a set integral [38] and
p(Mk−1,x1:k−1) is the shorthand notation for the posterior
at the previous time step. Once observing Zk, the predicted
density can be updated using the Bayes’ rule to obtain the
posterior at time k [13, eq. (8)]

p(Mk,x1:k|Z1:k,u1:k,x0) =

g(Zk|Mk,xk)p(Mk,x1:k|Z1:k−1,u1:k,x0)

g(Zk|Z0:k−1,x0)
, (9)

where the RFS likelihood is given in (4) and the term in the
denominator is a normalization constant.

IV. RAO-BLACKWELLIZED PHD-SLAM FILTER

An RBPF implementation of the PHD-SLAM filter is sum-
marized in this section. Fundamentally, the robot trajectory is
estimated with a PF and a PHD filter is used for estimating
each trajectory conditioned map.

A. Factorized RFS-SLAM Filter
Analogous to FastSLAM [11], the joint posterior RFS-

SLAM density in (7) can be factorized as [13]

p(Mk,x1:k|Z1:k,u1:k,x0) =

p(x1:k|Z1:k,u1:k,x0)p(Mk|Z1:k,x0:k). (10)

The recursion for the joint RFS-SLAM density presented in
Section III-B is equivalent to jointly propagating the posterior
density of the robot trajectory, p(x1:k|Z1:k,u1:k,x0), and the
posterior density of the map that is conditioned on the trajec-
tory, p(Mk|Z1:k,x0:k). The posterior of the robot trajectory
is computed as [13, eq. (16)]

p(x1:k|Z1:k,u1:k,x0) = p(x1:k−1|Z1:k−1,u1:k−1,x0)

× g(Zk|Z1:k−1,x0:k)f(xk|xk−1,uk)

g(Zk|Z1:k−1)
. (11)

The recursion to propagate the map posterior in time follows
the generalization of the recursive Bayesian filter applied
to sets [38] for which the prediction step is given by the
Chapman-Kolmogorov equation

p(Mk|Z1:k−1,x0:k) =

∫
f(Mk|Mk−1,xk)

× p(Mk−1|Z1:k−1,x0:k−1)δMk−1 (12)

and the update by applying the Bayes’ rule

p(Mk|Z1:k,x0:k) =
g(Zk|Mk,xk)p(Mk|Z1:k−1,x0:k)

g(Zk|Z1:k−1,x0:k)
.

(13)
As detailed in [13], the factorized solution defined by (11)-
(13) is similar to that of FastSLAM [11], [31] and the effect
of conditioning on x0:k is to render each landmark estimate
conditionally independent. However, adopting RFS likelihoods
affects how (11) is evaluated. Furthermore, FastSLAM is con-
ditioned on DA assignments which are essentially unknown,
whereas RFS-SLAM is not and the recursion defined by (12)
and (13) is that of an RFS-based mapping with known poses.

B. Representation of the RFS-SLAM Density
We follow an RBPF approach as in [13], [33], [36] and

approximate the posterior density of the robot trajectory using
a weighted set of N particles

p(x1:k|Z1:k,u1:k,x0) ≈
N∑

n=1

wn
k δ (x1:k − xn

1:k) , (14)

where δ(·) is the Dirac delta function, xn
1:k the nth particle

and wn
k the associated weight. The RFS-SLAM density is

parameterized using

{wn
k ,x

n
0:k, p(Mk|Z1:k,x

n
0:k)}Nn=1 , (15)

and each particle represents a single trajectory and a trajectory
conditioned map is associated to each of the particles.

We utilize a map representation based on the PHD by
approximating the posterior RFS map using a Poisson point
process (PPP) following assumed-density filtering [13], [39]

p(Mk|Z1:k,x
n
0:k) ≈

∏
m∈M vk(m|xn

0:k)

exp
(∫

vk(m|xn
0:k)dm

) . (16)
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In (16), vk(m|xn
0:k) is the shorthand notation for

vk(m|Z1:k,x
n
0:k) and it denotes the PHD conditioned

on the nth trajectory. Using a GM parametrization, the PHD
is given by [40]

vnk (m|xn
0:k) =

Mn
k∑

i=1

ηn,ik N (m̂n,i
k ,Pn,i

k ), (17)

where Mn
k is the number of GM components at time k and,

ηn,ik , m̂n,i
k and Pn,i

k are the weight, mean and covariance of
landmark i for particle n, respectively. It is to be noted that
the weights ηn,ik represent the number of landmarks at m̂n,i

k

and
∑Mn

k
i=1 η

n,i
k gives the expected number of landmarks in

the estimated map. In PHD-SLAM, the trajectory-conditioned
map is estimated using a PHD filter and the overall PHD-
SLAM density at time k is represented by

{
wn

k ,x
n
0:k,

{
ηn,ik , m̂n,i

k ,Pn,i
k

}Mn
k

i=1

}N

n=1

. (18)

C. PHD Filter for Mapping

The utilized mapping algorithm follows the GM implemen-
tation of the PHD filter [13], [40] which is summarized in
the following for the sake of completeness. If the PHD at the
previous time instant is a GM, then it follows that the predicted
PHD is also a GM, given by [13, eq. (22)]

vnk|k−1(m|xn
0:k) = vnk−1(m|xn

0:k−1) + vB
k (m|ZB

k−1,x
n
k−1),

(19)
and it is the union of the prior map, vnk−1(·), and the PHD of
the birth RFS, vB

k (·), which is used to model landmarks that
enter FOV(xk) for the first time as discussed in Section III-A.
The birth PHD at time k is modeled as a GM with MB,n

k

components, representing a subset of measurements at the
previous time step, ZB

k−1 ⊆ Zk−1 (see definition of ZB
k−1 after

(22))2. Thus, the predicted PHD has Mn
k|k−1 = Mn

k−1+MB,n
k

components and parameters of the prior map are unchanged
since the landmarks are static, that is, ηn,ik|k−1 = ηn,ik−1,
m̂n,i

k|k−1 = m̂n,i
k−1 and Pn,i

k|k−1 = Pn,i
k−1.

Since the likelihood in (5) has a Gaussian form, it follows
that the posterior PHD is also a GM, given by [13, eq. (23)]

vnk (m|xn
0:k) = vnk|k−1(m|xn

0:k)

[
1− pD(m|xn

k )

+
∑

z∈Zk

pD(m|xn
k )g(z|m,xn

k )

c(z) +
∫
Λ(m′, z|xn

0:k)dm′

]
(20)

where

Λ(m′, z|xn
0:k) = pD(m

′|xn
k )g(z|m′,xn

k )v
n
k|k−1(m

′|xn
0:k).

(21)
In practice, parameters of the updated PHD can be estimated
using any standard Gaussian filtering technique such as the
extended, unscented or cubature Kalman filter (see e.g., [41]).
In this paper, a first order Taylor series based Gaussian
approximation is used allowing EKF style updates and the

2A similar approach has been used in [13], [36] but using all the measure-
ments from time step k − 1, that is, ZB

k−1 = Zk−1.

reader is referred to [13], [36] for further details. To reduce
computational complexity of the update step, ellipsoidal gating
[42] is utilized and a measurement is used to update param-
eters of the GM component only if the squared Mahalanobis
distance is below gating threshold TG. Mathematically

∥zjk − g(m̂n,i
k|k−1,x

n
k ))∥2(Sn,i

k|k−1
)−1 ≤ TG, (22)

where Sn,i
k|k−1 = GmPn,i

k|k−1G
⊤
m + Rk, Gm denotes the

Jacobian of g with respect to mi evaluated at m̂n,i
k|k−1 and we

have used the notation ∥e∥2Ω = e⊤Ωe above. Furthermore,
measurements that are not used to update any landmark
constitute ZB

k , which is then used to initialize new land-
marks at the next time step. The updated map has at most
Mn

k|k = Mn
k|k−1× (|Zk|+1) components if every component

of vnk|k−1(m|xn
0:k) is updated by a misdetection and by every

measurement, but typically Mn
k|k < Mn

k|k−1 × (|Zk|+ 1).

D. Robot Trajectory

The posterior of the robot trajectory, p(x1:k|Z1:k,u1:k,x0),
can be estimated using for example the sequential importance
sampling (SIS) particle filter (see e.g. [43], [44]) which
recursively propagates the weights and support points. The
recursion consists of two steps for every particle n; the
importance density is first computed and sampled from

xn
k ∼ q(xk|xn

0:k−1,Z1:k,u1:k), (23)

and thereafter, the weights are updated according to

wn
k = wn

k−1

g(Zk|Z1:k−1,x
n
0:k)f(x

n
k |xn

k−1,uk)

q(xk|xn
0:k−1,Z1:k,u1:k)

. (24)

The optimal choice, in terms of minimizing the incremental
particle weights, for the importance density in (23) is given
by the OID [2], [44]

q(xk | xn
0:k−1,Z1:k,u1:k) = p(xk | Z1:k,x

n
0:k−1,u1:k)

=
g(Zk | Z1:k−1,x

n
0:k)f(x

n
k | xn

k−1,uk)

p(Zk | Z1:k−1,xn
0:k−1,u1:k)

.
(25)

Unfortunately, sampling directly from this distribution is im-
possible in the general case; it does not even possess a
closed form since we can not express the right-hand side as a
Gaussian in xk. However, an approximation of the OID can be
attained if the measurement model is approximated by a linear
function whereas the dynamic model may remain nonlinear
[32]. Such an approximation is utilized in FastSLAM 2.0 [31]
and a similar one in a recent PHD-SLAM work [20], but the
solutions condition on the selected best DA assignment, and
a wrong assignment can have significant ramifications to the
approximated importance density. To address this problem, we
propose sampling the poses under consideration of both the
motion of the robot and the measurements, as well as DA
uncertainty. The details of the improved approximation for
(25) are given in Section V.

It is to be noted that in PHD-SLAM, a common choice for
(23) is the transition density [13], [33], [34], [36], [45]

q(xk | xn
0:k−1,Z1:k,u1:k) = f(xn

k | xn
k−1,uk), (26)
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simplifying the weight update in (24) to

wn
k = wn

k−1g(Zk|Z1:k−1,x
n
0:k). (27)

Using the transition density as the importance density, enables
straightforward and efficient particle updates. However, if
covariance of the process noise is large with respect to the
measurement noise covariance, a downside of using such
a proposal is that most of the sampled particles will have
an insignificant weight after computing (24) and a large
number of particles are required to accurately approximate the
posterior. In Section VI, the performance of PHD-SLAM using
different importance densities is presented and discussed.

V. MULTI-HYPOTHESES IMPORTANCE DENSITY

This section presents an improved approximation for the
importance density given in (25) to better cope with DA uncer-
tainty. To handle data ambiguities, a MH-ID is derived and a
GMM representation is proposed, in which each component of
the GM represents a single DA. Before presenting the MH-ID,
we introduce a method that can be used to rank the DAs in
ascending order of cost. Then, the Γ best data associations
are used for approximating the MH-ID. In the following, the
importance density in (23) and weight in (24) are computed
independently for each particle and dependence of xn

k and
vnk (·) on particle n are excluded from the notation for brevity.

A. Computation of Γ Best Data Associations

If the DA is unknown, the number of ways Mk landmarks
can be assigned to Jk measurements increases very fast as
Mk and Jk grow. Instead of exhaustively computing all the
possible assignments, Γall, the goal is to rank the candidate DA
assignments in ascending order of cost, select the Γ best DAs
and truncate the rest. This problem can be cast as a ranked
assignment problem and solved using Murty’s algorithm [46].
The ranked assignment problem can be formulated using the
optimal assignment problem, given by [47]

minimize tr
(
Φ⊤L

)
(28)

s.t. {Φ}i,j ∈ {0, 1} ∀ i, j
∑Mk+Jk

j=1
{Φ}i,j = 1, ∀ i

∑Mk

i=1
{Φ}i,j ∈ {0, 1}, ∀ j

where Φ is the assignment matrix variable, L the cost matrix,
i ∈ {1, . . . ,Mk} and j ∈ {1, . . . ,Mk + Jk}. The cost matrix
is defined as

L = − log




ℓ1,1 . . . ℓ1,Jk

...
. . .

...
ℓMk,1 . . . ℓMk,Jk

∣∣∣∣∣∣∣

ℓ1,0 . . . 0
...

. . .
...

0 . . . ℓMk,0


 , (29)

where the left Mk × Jk sub-matrix corresponds to mea-
surements that are associated to a landmark and the right

Mk ×Mk diagonal sub-matrix corresponds to misdetections.
The elements of the cost matrix are given by [48]

ℓi,j =

∫
pD(m

i|x)
c(z)

g(zjk | mi,xk|k−1)p(m
i|x)dmi, (30)

ℓi,0 =

∫
(1− pD(m

i|x))p(mi|x)dmi, (31)

in which xk|k−1 = f(xk−1,uk) denotes the predicted state,
p(mi|x) = vk|k−1(m

i|x0:k) is the shorthand notation for the
predicted density of the ith landmark and the detection prob-
ability is approximated as pD(m

i|x) ≈ pD(m̂
i
k|k−1 | xk|k−1)

to make computation of the integrals feasible.
The optimal assignment problem seeks an assignment ma-

trix Φ that minimizes (28) and the ranked assignment problem
seeks an enumeration of the least highest cost assignment
matrices in non-decreasing order [46]. The cost of assignment
Φ is

γk|k−1 = exp
(
−tr(Φ⊤L)

)
(32)

and Murty’s algorithm [46] is used to find Γ̃ assignment matri-
ces such that γ1

k|k−1 ≤ γ2
k|k−1 ≤ . . . ≤ γΓ̃

k|k−1. A fixed value
could be used for Γ̃ but to conserve computational resources, Γ̃
is adaptively tuned to only account for DAs with a meaningful
cost as proposed in [49]. In Murty’s algorithm, we terminate
hypotheses generation whenever the cost of the most likely
hypotheses is below some fixed percentage of the cost of the
next hypotheses, that is, γ1

k|k−1/γ
Γ̃
k|k−1 < Tγ . We have noticed

that including the assignment, {ΦΓ̃+1}i,j = 1, ∀ i∧j = Jk+i,
increases robustness of the proposed algorithm in scenarios
where a wrong DA leads to an inaccurate importance density.
In such circumstances, it is beneficial to treat all of the
measurements as clutter and use the transition density as the
importance density. Thus, the total number of data associations
is Γ = Γ̃ + 1.

To make the treatment comprehensive, the mapping from
Φ to the association variable ϕt,i

k in (6) is defined as follows.
Let Φt denote the tth association matrix with cost γt

k|k−1. The
association variable is defined as ϕt

k = [ϕt,1
k , . . . , ϕt,Mk

k ] for
which the elements are given by

ϕt,i
k =

{
j if {Φt}i,j = 1 and j ≤ Jk

0 otherwise.
(33)

B. Multi-hypotheses Importance Density Approximation

The proposed method to compute parameters of the impor-
tance density is based on the IPL OID approximation intro-
duced in [22]. The proposed solution exploits the measurement
model structure and uses partitioned updates, that is, updates
the importance density approximation using one measurement
at a time, which yields an algorithm that scales according to
O(|M|). This efficiency makes it possible to include multiple
data association hypotheses in the importance density approx-
imation and still obtain a computationally efficient algorithm.

First, recall that the optimal choice (that minimizes the
incremental particle weights) for the importance density q(xk |
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x0:k−1,Z1:k,u1:k) in (23) for the PHD-SLAM filter is given
by [2], [44]

q(xk | x0:k−1,Z1:k,u1:k) ∝ g(Zk | Z1:k−1,x0:k)

× f(xk | xk−1,uk), (34)

where [13, eq. (24)]

g(Zk | Z1:k−1,x0:k) =

∫
g(Zk,Mk|Z1:k−1,x0:k)δMk,

=

∫
g(Zk | Mk,xk)p(Mk | Z1:k−1,x0:k)δMk,

(35)
with g(Zk | Mk,xk) and p(Mk | Z1:k−1,x0:k) as in (4)
and (12), respectively. Then, for Γ DA hypotheses, we have
(see the Appendix for details of the derivation)

g(Zk | Z1:k−1,x0:k)

=
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)

×
∏

i:ϕt,i
k =0

ηik|k−1

∫
[1− pD(m

i | xk)] (36)

×N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i

×
∏

i:ϕt,i
k >0

ηik|k−1

c(z
ϕt,i
k

k )

∫
pD(m

i | xk)g(z
ϕt,i
k

k | mi,xk)

×N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i.

Unfortunately, the detection probability makes the solution
of the remaining integrals not feasible. However, using the
predicted probability of detection p̂iD ≈ pD(m̂

i
k|k−1 | xk|k−1)

(obtained from the data association, Section V-A), we obtain
the approximation

g(Zk | Z1:k−1,x0:k)

≈
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)
∏

i:ϕt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:ϕt,i
k >0

ηik|k−1p̂
i
D

c(z
ϕt,i
k

k )
(37)

×
∫

g(z
ϕt,i
k

k | mi,xk)N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i.

Next, recall that PHD-SLAM (as well as FastSLAM) uses
an affine approximation of the likelihood around the predicted
landmark state m̂i

k|k−1 to facilitate the use of approximate
Rao–Blackwellization in the particle filter, which makes the
SLAM problem tractable. This yields the affine approximation
of the measurement likelihood function (5)

g(z
ϕt,i
k

k | mi,xk)

≈ N (z
ϕt,i
k

k ;g(m̂i
k|k−1,xk) +Gm,k(m

i − m̂i
k|k−1),Rk),

where Gm,k is the Jacobian of g with respect to mi evaluated
at m̂i

k|k−1. Hence, the predicted likelihood is approximated as

g(Zk | Z1:k−1,x0:k)

≈
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)
∏

i:ϕt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:ϕt,i
k >0

ηik|k−1p̂
i
D

c(z
ϕt,i
k

k )
(38)

×N (z
ϕt,i
k

k ;g(m̂i
k|k−1,xk),Gm,kP

i
k|k−1G

⊤
m,k +Rk).

Then, the multi-hypotheses importance density can in turn be
approximated as

p(xk | Z1:k,x0:k−1,u1:k)

∝∼
Γ∑

t=1

κt
k|k−1f(xk | xk−1,uk) (39)

×
∏

i:ϕt,i
k >0

N (z
ϕt,i
k

k ;g(m̂i
k|k−1,xk),Gm,kP

i
k|k−1G

⊤
m,k +Rk),

where ∝∼ denotes “approximately proportional to”. This is a
mixture density with mixture weights

κt
k|k−1 ∝ exp(−λc)

|Z|∏

j=1

c(zjk)
∏

i:ϕt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:ϕt,i
k >0

ηik|k−1p̂
i
D

c(z
ϕt,i
k

k )
.

(40)

Unfortunately, this cannot be sampled from and instead,
we propose to approximate the above mixture density using a
Gaussian mixture of the form

p(xk | Z1:k,x0:k−1,u1:k) ≈
Γ∑

t=1

κt
k N (xk;µ

t
k,Σ

t
k) (41)

instead. It is to be noted that the work in [20] uses a single
Gaussian representing one DA to approximate the importance
density, whereas in this work, we use a GM representing Γ
DAs to approximate the importance density. As in [20], the
mixture moments µt

k and Σt
k are calculated using the IPL-

based OID approximation approach [22]. However, we use a
partitioned update strategy, which entails that the individual
landmark measurements are used one at a time to update the
proposal density, whereas the work in [20] uses a joint update
strategy.

Algorithm 1 summarizes the resulting algorithm, which
consists of three steps. First, the measurement likelihood is
linearized, which requires calculating the moments

µ̃z
l = Eπ{g(m̂i

k|k−1,xk)}, (42a)

Σ̃
zz

l = Eπ{(g(m̂i
k|k−1,xk)− µ̃z

l )(g(m̂
i
k|k−1,xk)− µ̃z

l )
⊤}

+ Eπ{Gm,kP
i
k|k−1G

⊤
m,k}+Rk, (42b)

Σ̃
zx

l = Eπ{(g(m̂i
k|k−1,xk)− µ̃z

l )(xk − µ̃x
l )

⊤} (42c)

where Eπ{·} denotes the expectation with respect to the
linearization density π(xk). Note that the resulting integrals



8

can typically not be solved in closed-form, but Taylor series
expansion or sigma-points can be used to approximate them.
In this paper, we resort to local linearization using a first order
Taylor series expansion.

Second, based on the linearization moments (42), the mo-
ments of the linearized likelihood (linearized w.r.t. π(xk)) are
calculated according to [21], [22]

Bl = Σ̃
zx

l (Σ̃
xx

l−1)
−1, (43a)

µz
l = µ̃z

l +Bl(µ̃
x
l − µ̃x

l−1), (43b)

Σzz
l = Σ̃

zz

l +Bl

(
Σ̃

xx

l − Σ̃
xx

l−1

)
B⊤

l , (43c)

Σxz
l = Σ̃

xx

l B⊤
l . (43d)

Third, the mean and covariance of the mixture component
are updated using the standard Kalman filter update. Note,
however, that the measurements are incorporated one at a time
in a partitioned update scheme, which has computational cost
of O(|Mk|), compared to a full joint update used in [20] that
scales according to O(|Mk|3).

The choice of the linearization density is as follows. First,
the linearization density is chosen to the dynamic model (i.e.,
the prior). Then, after each iteration, a new approximation
of the posterior density is obtained, which is then used as
the linearization density in the next iteration. The procedure
is repeated either for a fixed number of iterations L or upon
convergence, see [22]. Once the moments have been computed,
weight of the mixture component is given by

κt
k ∝ exp(−λc)

|Z|∏

j=1

c(zjk)
∏

i:ϕt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:ϕt,i
k >0

ηik|k−1p̂
i
D

c(z
ϕt,i
k

k )
N (z

ϕt,i
k

k ;g(m̂i
k|k−1,µ

t
k),S

t,i
k ),

(44)

where St,i
k = Gx,kΣ

t
kG

⊤
x,k + Gm,kP

i
k|k−1G

⊤
m,k + Rk and

Gx,k is the Jacobian of g with respect to x evaluated at µt
k.

C. Sampling and Importance Weight

After computing parameters of the GM-ID approximation in
(41), a new particle xn

k is drawn from the proposed importance
density as follows. First, a component t is randomly drawn
from the categorical distribution defined by the weights (44).
Thereafter, the multivariate normal distribution with moments
µt

k and Σt
k is sampled from, that is, xn

k ∼ N (µt
k,Σ

t
k). It is

important to note that for each particle only one mixture com-
ponent is sampled from the GM-ID and the multi-hypotheses
structure is only partially preserved over time for a single
particle. Since the weights are normalized by the likelihood of
the GM-ID, the multi-hypotheses structure is encoded in the
weights of the particles. In addition, different particles, even
with the same prior, can sample different mixture components
from the GM-ID and the PHD-SLAM density in (18) is able
to capture N hypotheses overall.

Algorithm 1 IPL approximation for mixture component t

1: Set µ̃x
0 = f(xk−1,uk), Σ̃

xx

0 = Qk−1

2: for l = 1, . . . , L do
3: Set µ̃x

l = f(xk−1,uk), Σ̃
xx

l = Qk−1

4: for i : ϕt,i
k > 0 do

5: Linearization: Calculate the moments µ̃z
l , Σ̃

zz

l ,
and Σ̃

zx

l using z
ϕt,i
k

k w.r.t. the linearization density
π(xk) = N (xk; µ̃

x
l−1, Σ̃

xx

l−1) according to (42)

6: Moment matching: Calculate the moments µz
l ,

Σzz
l , and Σzx

l of the linearized measurement
model according to (43)

7: Measurement update for landmark i:

Kl = Σxz
l (Σzz

l )−1

µ̃x
l = µ̃x

l +Kl(z
ϕt,i
k

k − µz
l )

Σ̃
xx

l = Σ̃
xx

l −KlΣ
zz
l K⊤

l

8: end for
9: end for

10: Set µt
k = µ̃x

L, Σt
k = Σ̃

xx

L

Log of the importance weight in (24), w̃n
k = log(wn

k ), is
updated using

w̃n
k = log

(
wn

k−1

g(Zk|Z1:k−1,x
n
0:k)f(x

n
k |xn

k−1,uk)

q(xk|xn
0:k−1,Z1:k,u1:k)

)
,

= w̃n
k−1 + w̃n

meas. + w̃n
prior − w̃n

prop.. (45)

In literature, several methods for computing w̃n
meas. have been

proposed including an empty map update [13], single feature
update [13] and multi-feature update [33]. With a PPP prior
and a point object measurement model, we use the exact
expression for w̃n

meas., computed as [34]

w̃n
meas. =

∑

z∈Zk

log
(
c(z) +

∫
Λ(m, z|xn

k )dm
)
, (46)

where Λ(·) is defined in (21). Log-likelihood of the prior is
given by

w̃n
prior = logN

(
xn
k ; f(x

n
k−1,uk),Qk−1

)
. (47)

Respectively, log-likelihood of the proposal is computed using

w̃n
prop. = log

Γ∑

t=1

κ̃t
kN

(
xn
k ;µ

t
k,Σ

t
k

)
, (48)

where κ̃t = κt
k/

∑Γ
t κ

t
k are the normalized weights. Algo-

rithm 2 summarizes the proposed algorithm to approximate
the importance density in (23), sample from it in closed
form and update the incremental weights in (24). In practice
however, it is computationally more efficient to compute the
incremental weight in two phases. The weight is updated with
log-likelihoods of the prior and proposal during the weight
update and w̃n

meas. is added to the importance weight during
the PHD update step.
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Algorithm 2 Proposed algorithm to update particle n

1: Input: Zk, uk,
{
wn

k−1,x
n
k−1, v

n
k|k−1(m|xn

0:k)
}N

n=1
2: procedure COMPUTE GM-ID
3: Cost matrix: Propagate particle xk|k−1 = f(xk−1,uk)

and compute L according to (29).
4: Rank DAs: Compute Γ best DAs using L and Murty’s

algorithm as presented in Section V-A.
5: for t = 1, . . . ,Γ do
6: Compute moments µt

k and Σt
k using Algorithm 1

and weight κt
k according to (44).

7: end for
8: end procedure
9: Sample from GM-ID: xn

k ∼ ∑Γ
t=1 κ

t
kN (xk;µ

t
k,Σ

t
k).

10: Incremental weight: Update wn
k according to (45).

11: Output: Updated particle {wn
k ,x

n
k} at time step k

Algorithm 3 Proposed PHD-SLAM algorithm at time step k

1: Input: Zk, uk,
{
wn

k−1,x
n
k−1, v

n
k−1(m|xn

0:k−1)
}N

n=1
2: for n = 1, . . . , N do
3: PHD predict: Compute vnk|k−1(m|xn

0:k) using (19).
4: Particle update: Use Algorithm 2 to obtain {wn

k ,x
n
k}.

5: PHD update: Compute vnk (m|xn
0:k) using (20).

6: Hypotheses reduction: Prune and merge Mn
k|k GM-

PHD components to obtain a reduced number of
components, Mn

k ≤ Mn
k|k, as presented in [40].

7: end for
8: Estimate: Find j = argmaxN {wk}Nn=1 and compute the

map M̂k = {m̂j,i
k : ηj,i ≥ Tη, i = 1, . . . ,M j

k} and robot
x̂k = xj

k estimates.
9: Resample: Normalize the weights wn

k = wn
k/

∑N
n=1 w

n
k ,

compute the effective sample size ESS = 1/
∑N

n=1 w
n
k .

and resample if ESS ≤ TESS.
10: Output: M̂k, x̂k, {wn

k ,x
n
k , v

n
k (m|xn

0:k)}
N
n=1.

VI. EXPERIMENTAL RESULTS

The development efforts of the paper are evaluated with
synthetic data [35] and the experimental Victoria Park data
set [50]. The experiments focus on vehicles operating in
planar environments so that pose can be represented by the
2D location (x, y) and heading θ. Furthermore, the vehicle
is controlled by speed v and steering ω commands. Thus,
the state and control input of the vehicle at time k are
xk = [xk, yk, θk]

⊤ and uk = [vk, ωk]
⊤, in respective order.

The landmarks in the environment are static, and location of
the ith landmark is mi = [xi, yi]⊤.

We compare the developed filter only with other PHD-
SLAM filters [13], [20], [35], since it has already been
demonstrated that they outperform more conventional SLAM
filters (e.g., [11], [31], [51]) in high clutter scenarios [13], [20],
[33], [35]. We refer to the original PHD-SLAM filter [13] as
PHD-SLAM 1.0 and the other two filters as PHD-SLAM 2.0a
[35] and PHD-SLAM 2.0b [20] since both approximate the
importance density considering both the motion of the robot
and the measurements. This naming convention follows the

FastSLAM algorithms, since the original algorithm that used
the motion model as the importance density was coined as
FastSLAM 1.0 [11] and the filter that used the improved sam-
pling distribution was named FastSLAM 2.0 [31]. Honoring
this naming convention, the algorithm implemented in this
paper is coined PHD-SLAM 3.0, since the presented multi-
hypotheses importance density offers a notable advantage in
cluttered scenarios where data ambiguities are common.

Overall, 100 Monte Carlo simulations (MCSs) are per-
formed and the results are obtained by averaging over the
independent simulations. The accuracy of the state estimates
is evaluated using the root mean squared error (RMSE) and
mapping accuracy is evaluated with the generalized optimal
subpattern assignment (GOSPA) metric which captures the lo-
calization error and penalizes for missed and false landmarks.
Let Mk = {m1

k, . . . ,m
|M|
k } and M̂k = {m̂1

k, . . . , m̂
|M̂|
k }

denote the map and its estimate at time k, respectively. Now,
GOSPA is defined as [52]

dck,p(Mk,M̂k)

=

[
min
ξ∈Ξ

∑

(i,j)∈ξ

∥mi
k−m̂j

k∥p+
cp

2

(
|Mk|+ |M̂k|−2|γ|

)] 1
p
,

in which ξ is the assignment set between M and M̂, Ξ the set
of all possible assignment sets ξ, ∥·∥ denotes the Euclidean
norm, and c defines the maximum allowable localization error.
Unless otherwise stated, GOSPA is computed only for the last
time instant to capture the localization and cardinality errors
of the final map. Parameters used in computing GOSPA are:
c = 20 m and p = 2.

As with all PHD-SLAM filters, pruning and merging opera-
tions are required to limit the exponential growth of Gaussian
components in the PHD. These operations are carried out as
in [40, Table II] using a pruning threshold of log(10−6) and
a merging threshold of 50. In addition, ellipsoidal gating with
threshold TG = 41.4465 is used to lower computational com-
plexity of the PHD update step in (20), as well as, computing
the cost matrix in (29). Weight of newly created landmarks is
initialized to η = log(10−6). The map estimate threshold is
Tη = (1−pD)

2 to allow two consecutive misdetections before
the landmark is not considered as an estimate. The maximum
number of ranked assignments computed by Murty’s algorithm
is limited to Γ̃ = 50 and the threshold to terminate hypotheses
generation is Tγ = log(10−3). The maximum number of IPL
iterations is L = 5 and the convergence threshold is ϵ = 10−3

[22, eq. (11)]. The effective sample size (ESS) threshold to
perform resampling is set to TESS = 0.2×N . The developed
PHD-SLAM filter is summarized in Algorithm 3.

The PHD-SLAM filters are implemented using MATLAB
and the core functions are written in C/C++ and compiled to
Matlab MEX-files to enable a highly efficient implementation
of the algorithms. The simulations and experiments are run on
a Lenovo ThinkPad P1 Gen 2, with a 2.6 GHz 6-Core Intel
i7-9850H CPU and 64 GB of memory. Multi-threading is not
exploited and the simulations are run on a single CPU core.
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Fig. 1. Simulation scenario in which the landmarks are illustrated using ( ),
the robot trajectory with ( ) and measurements as observed from the ground
truth poses using ( ). Trajectory estimate only using odometry information
( ) and the trajectory ( ) and map ( ) estimates of PHD-SLAM 3.0
using one particle. In the example, RMS positioning error is 1.30 m, RMS
heading error is 0.27◦ and GOSPA of the final map is 21.94 m.

A. Synthetic Data Set

The simulation scenario is illustrated in Fig. 1 in which a
robot is exploring a 1 km2 area that contains 160 landmarks
along the robot trajectory. Kinematics of the robot are de-
scribed by a velocity motion model [2]

f(xk−1,uk) =

xk−1 − vk

ωk
sin(θk−1) +

vk
ωk

sin(θk−1 + ωkT )

yk−1 +
vk
ωk

cos(θk−1)− vk
ωk

cos(θk−1 + ωkT )

θk−1 + ωkT


 , (49)

and disturbances enter the system via a noisy control input
that is corrupted by zero-mean i.i.d. Gaussian noise ϑk ∼
N (0,Q), with covariance Q = diag(σ2

v , σ
2
ω). The robot is

equipped with a sensor that measures the range and bearing
of the landmark relative to the robot’s local coordinate frame.
The measurement model for the ith landmark is given by [2]

g(mi,xk) =

[ √
(xi − xk)2 + (yi − yk)2

atan2(yi − yk, x
i − xk)− θk

]
(50)

and the measurements are corrupted by zero-mean i.i.d. Gaus-
sian noise, εk ∼ N (0,R), with covariance R = diag(σ2

r , σ
2
ϕ).

In the simulations, the robot speed is 1 m/s on average
and the maximum angular velocity is approximately 1 deg/s.
Standard deviation of the control noises are σv = 0.8 m/s
and σω = 0.5π

180 rad/s. The range-bearing sensor outputs a
measurement every T = 1 s, and the sensor has a limited
FOV with a ± 90◦ scanning angle and a maximum range of
150 m. The detection probability is pD = 0.95 within the
FOV, zero outside the FOV, and the detection probability is
approximated using E{pD(m | xk)} in which the expectation
is evaluated with respect to the landmark density N (m̂,P).
Standard deviation of measurement noise are σr = 0.8 m and
σϕ = 0.3π

180 rad. The clutter intensity inside the FOV is λ = 5
so that the expected number of false measurements is five per

Fig. 2. The evaluation metrics as a function of time for the different filters
which are illustrated using: PHD 2.0a ( ), PHD 2.0b ( ) and PHD 3.0
( ) for which the estimated trajectory is shown in Fig. 1. On the bottom, the
number of GM components used in the PHD 3.0 GM-ID approximation, and
as shown, data ambiguity increases the number of GM components which
enables the proposed filter to account for DA uncertainty. Wrong DA can
cause a filter to diverge as portrayed by PHD 2.0b at time instance k = 689.

time epoch. The simulation parameters are the same as used
in [35].

1) Particle Degeneracy: We begin the evaluation by exam-
ining sample degeneracy of the filters. Particle filters utilize
resampling to algorithmically limit degeneracy of the parti-
cles [32] but as a drawback, diversity in the sample set is
decreased as some of the particles are neglected while others
are duplicated. After resampling has been performed enough
times, all of the particles will share a single mutual ancestor
and diversity in the sample set beyond this point is lost. The
distance to the common ancestor is crucial to the performance
of RBPF-based SLAM algorithms, since it defines how large
a loop can effectively be closed [53]. Hence, resampling
is disabled in the following analysis to emphasize sample
degeneracy. Results for PHD-SLAM 1.0 are partly omitted in
the following analysis since the filter exhibits severe particle
degeneracy and requires very frequent resampling. For brevity,
we refer to the filters simply as PHD X.0x from now on.

The evaluation metrics of an exemplar MCS and the
number of GM components used by the proposed GM-ID
approximation are illustrated in Fig. 2. In the example, the
filters only use one particle and as visualized, the proposed
filter is able to track the robot and map the environment
accurately (see also Fig. 1). On the contrary, PHD 2.0a and
PHD 2.0b diverge as indicated by the evaluation metrics. The
importance density of PHD 2.0a is computed by conditioning
the predicted robot state to the measurements independently
to obtain |Mk| × |Zk| independent conditional distributions.
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(a) PHD 2.0a (b) PHD 2.0b (c) PHD 3.0
Fig. 3. 100 particle trajectories estimated using PHD 2.0a, PHD 2.0b and PHD 3.0 without resampling. In the figures, the landmarks are illustrated using ( )
and the ground truth trajectory with ( ). The independent particle trajectories shown with ( ), the most likely hypotheses illustrated using ( ) and its
map estimate portrayed with ( ).

TABLE II
POSITIONING AND MAPPING ACCURACY OF PHD-SLAM WITHOUT

RESAMPLING. THE EVALUATION METRICS ARE IN METERS.

N = 1 N = 10 N = 100
Filter Pos. Map Pos. Map Pos. Map

PHD 1.0 254.2 229.5 258.7 230.1 237.8 230.4
PHD 2.0a 51.5 217.3 46.4 215.8 47.2 214.5
PHD 2.0b 29.7 189.4 26.7 185.9 23.3 175.3
PHD 3.0 3.5 46.8 2.4 38.7 2.5 38.4

Thereafter, the GMM is approximated as a single Gaussian
using weighted averaging to obtain the mean and covariance
of the proposal density. The method is suboptimal since the
dependencies between the robot and landmarks are mostly
ignored. PHD 2.0b approximates the importance density by
first finding the joint approximation of the robot and map,
and then by conditioning on the measurements of a single
DA. Although this approach typically yields a more accurate
approximation of the importance density, it is sensitive to data
ambiguities which can cause the filter to diverge as illustrated
in Fig. 2. The proposal of PHD 3.0 takes data ambiguity into
account by computing the importance density approximation
for multiple DAs resulting in a GMM proposal which is then
used for sampling. As illustrated in Fig. 2, the proposed filter
is able to handle data ambiguities, at for example sample
k = 689, resulting in good performance even when using just
one particle.

In general, the accuracy of RBPF-based SLAM solutions
can be improved using more particles and Fig. 3 illustrates
the trajectories of 100 independent particles of an exemplar
MCS. As illustrated, PHD 3.0 is able to constrain uncertainty
of the posterior approximation at a much lower level than
the benchmark solutions which is advantageous when closing
large loops. The proposal used in PHD 2.0a is overly con-
servative and the filter is unable to propagate the posterior
approximation accurately over time leading to satisfactory
performance. The proposal of PHD 2.0b utilizes an impor-
tance density approximation similar to the OID improving
the performance with respect to PHD 2.0a. However, wrong
DAs increase dispersion of the particles and the filter requires
a high number of particles to account for data ambiguities.

On the contrary, PHD 3.0 is able to achieve high accuracy
already with one particle since the posterior can be accurately
approximated over extended periods of time and under DA
uncertainty. The results with different number of particles are
summarized in Table II and the results imply that PHD 3.0
has notable benefits with respect to the benchmark solutions.

The DAs used by PHD 2.0b and PHD 3.0 for approximating
the importance density are explicitly defined so that we can
quantify the accuracy of DA for these two filters. Assigning
measurements to correct landmarks is measured using the
true positive ratio (TPR), assigning measurements to clutter
is measured using the true negative ratio (TNR) and value of
one corresponds to perfect DA. For PHD 2.0b, TPR = 0.9223
and TNR = 0.9980, and for PHD 3.0, TPR = 0.9829 and
TNR = 0.9984. It is important to note that for PHD 3.0,
the DA assignments are ranked in non-decreasing order of
cost, that is, γ1

k|k−1 ≤ γ2
k|k−1 ≤ . . . ≤ γΓ

k|k−1. PHD 2.0b
always uses the optimal assignment with cost γ1

k|k−1 for
approximating the importance density. On the other hand,
PHD 3.0 samples from the GMM according to the mixture
weights κt

k and it is possible that the optimal assignment
with cost γ1

k|k−1 does not result to the highest weight so
that another mixture component is sampled instead. The main
difference of computing γt

k|k−1 and κt
k is the used prior,

γt
k|k−1 is computed using the predicted vehicle pose, whereas

κt
k is computed using the IPL approximation. Thanks to this

subtle but important difference, PHD 3.0 is able to make
correct DAs more frequently, validating the research premise
that the GM-ID is more suited for modeling DA uncertainty.
Comprehensive understanding of the underlying uncertainties
supports inference, which in turn can be used to improve the
overall performance of PHD-SLAM as we have demonstrated
above.

2) Filter Performance: Resampling is a crucial step of
most PFs to limit degeneracy of the algorithm [32], and
as summarized in Table III, the performance of all filters
improves when resampling is enabled. Most of the particles
sampled from the proposals of PHD 1.0 and PHD 2.0a have
an insignificant weight as indicated by the low ESS and as a
result, these filters rely on resampling at nearly every time step
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TABLE III
PERFORMANCE SUMMARY USING SYNTHETIC DATA. THE LAST COLUMN INDICATES THE TIME REQUIRED TO PERFORM ONE RECURSION OF THE FILTER.

Filter version N Pos. ± 1 std. [m] Head. ± 1 std. [deg] GOSPA ± 1 std. [m] ESS [%] Resampling [%] Time ± 1 std. [ms]
PHD 1.0 1 254.21± 169.25 30.62± 30.28 229.48± 8.23 N/A 0.00 0.07± 0.06
PHD 2.0a 1 51.45± 34.77 6.12± 6.12 217.32± 17.29 N/A 0.00 0.10± 0.03
PHD 2.0b 1 29.69± 20.73 3.49± 3.49 189.41± 32.93 N/A 0.00 0.26± 0.11
PHD 3.0 1 3.45± 2.45 0.42± 0.42 46.84± 22.87 N/A 0.00 0.14± 0.03

Oracle RBPF 1 2.59± 1.68 0.33± 0.33 29.36± 16.47 N/A 0.00 N/A
PHD 1.0 10 21.51± 14.72 2.62± 2.61 169.62± 41.14 13.65 99.92 0.59± 0.09
PHD 2.0a 10 3.57± 2.24 0.42± 0.42 45.26± 20.97 18.62 99.38 0.65± 0.11
PHD 2.0b 10 3.61± 2.76 0.43± 0.43 41.97± 25.65 52.14 7.43 2.28± 1.06
PHD 3.0 10 2.66± 1.83 0.34± 0.34 38.27± 15.42 49.34 5.14 1.17± 0.28

Oracle RBPF 10 2.18± 1.40 0.29± 0.29 24.41± 14.26 47.72 2.43 N/A
PHD 1.0 100 3.09± 1.93 0.36± 0.36 39.50± 17.89 5.25 99.95 5.45± 0.75
PHD 2.0a 100 2.64± 1.70 0.30± 0.30 33.96± 15.80 11.48 99.84 5.95± 0.78
PHD 2.0b 100 2.31± 1.54 0.30± 0.30 32.44± 14.68 50.94 11.59 22.16± 10.81
PHD 3.0 100 2.18± 1.42 0.29± 0.29 32.12± 12.92 49.21 9.42 10.94± 2.58

Oracle RBPF 100 2.17± 1.45 0.29± 0.29 23.52± 15.14 46.66 5.26 N/A

to avoid sample degeneracy. ESS of PHD 2.0b and PHD 3.0
is significantly higher and resampling is performed only at
a fraction of times which increases the probability to close
larger loops effectively. In addition, more efficient use of
particles enables the proposed system to achieve comparative
performance and a reduced computational overhead, or higher
accuracy and a comparative run-time with respect to the
benchmark PHD-SLAM filters.

To investigate RBPF-based SLAM performance with perfect
DAs, we implement an Oracle RBPF algorithm that knows the
correspondences between measurements and landmarks. The
implemented algorithm is similar to FastSLAM 2.0 [31] with
the difference that the used sampling distribution is replaced
with the IPL-based OID approximation approach [22]. The
reason why we implement FastSLAM 2.0 is that PHD-SLAM
does not offer any advantage over FastSLAM 2.0 if the corre-
spondences are known since clutter, detections, misdetections
and DAs can be discarded. The results of the Oracle RBPF
are tabulated in Table III and interestingly, PHD 3.0 nearly
achieves the same performance and the difference between
the two diminishes as N grows. Already with 100 particles,
PHD 3.0 and Oracle RBPF yield comparative tracking ac-
curacy but the mapping accuracy of PHD 3.0 is worse. The
reason is that PHD 3.0 occasionally has a missed or false
landmark in the final map and the GOSPA metric penalizes
heavily for such cardinality errors. For Oracle RBPF the
cardinality error is always zero since the DAs are known. Since
PHD 3.0 has comparative accuracy to the Oracle RBPF, it can
be concluded that the PHD-SLAM filter combined with the
proposed GM-ID fulfills the objectives of probabilistic SLAM,
that is, accurately estimate the joint posterior density of the
map and robot trajectory.

3) Computational Complexity: Let M = |MFOV| denote
the number of landmarks within the FOV and let us assume
each landmark is associated to a measurement for simplic-
ity. The joint importance density approximation utilized by
PHD 2.0b has complexity O(M3), whereas the partitioned up-
date proposed in this paper scales linearly as O(M). Moreover,
the joint approximation requires (dim(x)+dim(m)×M)2 =
(3 + 2M)2 of memory which must be allocated dynamically,
whereas the partitioned update only requires 32 + 22 of

static memory. The aforementioned memory requirements are
only for the covariance matrix in (42) and similar memory
requirements also hold for other parameters involved in the
importance density approximation (see Algorithm 1). These
beneficial features of the partitioned IPL importance density
approximation yield to a notable reduction in computational
complexity and on average, the partitioned approximation
can be computed in 14.0 us for a single particle and GM
component, whereas the joint approximation takes 173.4 us.
As a result, even though the proposed approach considers
multiple DAs in the GM-ID, the overall filtering algorithm is
computationally more efficient than PHD 2.0b as tabulated in
Table III. With respect to PHD 1.0 and PHD 2.0a, the higher
computational cost of PHD 3.0 can be easily justified since
the number of particles can be reduced notably resulting in a
much more efficient algorithm.

B. Victoria Park Data Set

The algorithms are also tested on a benchmark SLAM
data set collected with an instrumented vehicle covering a
distance of over 4 km in Victoria Park, Sydney [10]. The
vehicle is equipped with a laser rangefinder, encoders and
GPS. The laser scans are used to obtain range and bearing
measurements to nearby trees and the encoders are used to
measure velocity and steering angle of the vehicle. The GPS
is used for evaluation purposes only and it provides ground
truth for the vehicle trajectory, while no ground truth data
is available for the locations of the landmarks. The reader
is referred to [10], [50] for further details on the data set and
used models. To make the scenario more challenging, artificial
clutter is added to the original data set to make the detection
conditions less ideal as in [33]. The clutter measurements
follow a Poisson distribution with clutter intensity λ = 5 and
the false measurements are uniformly distributed inside the
FOV. In the experiment, the FOV is limited to ± 85◦ scanning
angle and 50 m scanning range, and the detection probability
is approximated using pD = 0.7(1−∥m̂−xk∥/50) within the
FOV. The filters use Q = diag([12 [m/s]2, ( 4π

180 )
2 [rad/s]2])

and R = diag([12 [m]2, ( 1π
180 )

2 [rad]2]) for the control and
measurement covariances, respectively. To demonstrate the
capability of PHD 2.0b and PHD 3.0 to close large loops,
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(a) PHD-SLAM 2.0a (b) PHD-SLAM 2.0b (c) PHD-SLAM 3.0
Fig. 4. Filter performance using one particle with the benchmark Victoria Park data set. The GPS coordinates illustrated using ( ), the estimated trajectory
with ( ) and the map estimate portrayed with ( ).

TABLE IV
PERFORMANCE SUMMARY USING VICTORIA PARK DATA SET. THE LAST

COLUMN INDICATES THE TIME OF ONE FILTER RECURSION.

Filter version N Pos. [m] Resampling [%] Time [ms]
PHD 1.0 1 154.49 0.00 0.23
PHD 2.0a 1 145.91 0.00 0.32
PHD 2.0b 1 5.90 0.00 0.54
PHD 3.0 1 3.57 0.00 0.40
PHD 1.0 5 6.06 40.54 0.67
PHD 2.0a 5 5.30 34.00 0.83
PHD 2.0b 5 3.68 0.52 2.11
PHD 3.0 5 3.38 0.49 1.79
PHD 1.0 10 5.41 25.18 1.17
PHD 2.0a 10 5.40 20.84 1.57
PHD 2.0b 10 3.61 0.41 4.06
PHD 3.0 10 3.36 0.39 3.41

the ESS threshold to perform resampling is set to TESS = 1
for these two filters in the Victoria Park experiments.

Fig. 4 illustrates a typical estimation result of the filters
and Table IV summarizes performance of the algorithms. The
results are inline with the simulations, PHD 1.0 and PHD 2.0a3

require a high number of particles to obtain satisfactory per-
formance, and PHD 2.0b outperforms the two but is prone to
diverge if a low number of particles is used. PHD 3.0 is robust
to data ambiguities and results to the best overall performance.
It is to be noted that correct DA is very challenging in the
considered scenario and PHD 3.0 confronts this difficulty by
using more components in the GM-ID approximation which
increases computational overhead of the algorithm. However,
the small number of particles required by PHD-SLAM 3.0
translates to a highly efficient algorithm. While the data
acquisition phase in the Victoria Park data set required 1549
seconds, the proposed algorithm with one particle only takes
2.90 seconds to run which is only 0.19% of the experiment
duration.

3The reference implementation of PHD2.0a, which is available at [54], does
not sample the particles according to [35, eq. (51)] but uses the mean of the
importance density instead. In this paper, we have implemented PHD2.0a as
presented in [35] and how particle filters typically operate, that is, sampling
is performed by drawing random samples from the approximated importance
density. In addition, we have added artificial clutter to the measurements and
therefore, the presented results for PHD 2.0a differ significantly from the ones
presented in [35].

C. Discussion

The proposed PHD filter has numerous tuning parameters
that provide a trade-off between accuracy and computational
complexity. These tuning parameters include the gating thresh-
old, hypotheses pruning parameters and IPL parameters. We
have set the parameters such that the values provide a good
compromise between accuracy and computational complexity.
For example, increasing Γ̃ improves the accuracy up to some
limit, but at the same time, the computational complexity
increases. We have set the value such that it provides fairly
low computational overhead and still high enough so that the
performance cannot be improved using an even higher value
(Γ̃ > 50). The other tuning parameters behave in the same
manner. Either increasing or decreasing the parameter value
improves the accuracy up to some limit but it also increases
the computational overhead. The value of the other parameters
were adjusted to achieve good filter performance and moderate
computational overhead.

There are also models and parameters that are not precisely
known in real-world experiments. As an example, the detection
statistics are unknown for the Victoria Park data set since it
is a function of the used sensor as well as the environment.
In this work, the detection statistics are approximated using
the probability of detection and clutter intensity parameters.
Since these two parameters are also very central for the PHD
filter, we have analyzed sensitivity of the proposed algorithm
to changes in these parameters for which the results are
illustrated in Fig. 5. As shown, the algorithm is not very
sensitive to changes in either of the parameters and good
accuracy is achieved when pD ≥ 0.4 and λ ≥ 5. It is
to be noted that in the Victoria Park experiment, the used
model for the detection probability is sufficient to obtain good
accuracy but it has certain limitations since it does not account
for obstructions created by other landmarks and vegetation.
Using more accurate detection statistics which is able to take
occlusions into account [55], it is possible to further improve
the filter performance which we will explore in future research.

The most significant weakness of the proposed algorithm
is inconsistency of the filter which is mostly caused by
linearization errors combined with resampling. The problem
is that whenever resampling is performed, an entire trajectory
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Fig. 5. Sensitivity analysis using the synthetic ( ) and Victoria Park ( )
data sets. In (a), RMSE as a function of detection probability and in (b),
RMSE as a function of clutter intensity. In (b), the large changes in RMSE
for λ ≥ 5 are caused by a single MCS which has much higher RMSE with
some specific λ values.

and map hypotheses is lost permanently for those particles
that are not selected. This depletes the number of samples
representing past poses and consequently erodes the statistics
of the landmark estimates conditioned on these past poses.
After resampling has been performed enough times, all of
the particles will share a single mutual ancestor and estimate
diversity beyond this point is lost forever. As a consequence,
the loss of particle diversity can prevent a consistent long-term
estimate of the joint RFS-SLAM density. The very same prob-
lem is encountered by FastSLAM [56] and, even though not
reported in literature, other PHD-SLAM filters. To prolong the
time-period over which RBPF-SLAM solutions are reasonably
consistent, it is necessary to reduce the impact of resampling
[56], [57]. In this regard, the proposed algorithm’s ability to
constrain uncertainty of the posterior approximation at a much
lower level and the ability to achieve good performance even
without resampling can be seen as a major advantage.

Most filtering-based SLAM methods have been shown to be
inconsistent [56], [58]. Fundamentally, inconsistency is caused
by the filter’s inability to reflect the unobservable degrees
of freedom of SLAM and the filter tends to erroneously
acquire information along the directions spanned by these
unobservable states [59]. These erroneous updates cannot be
undone in the filtering framework and therefore, more robust
SLAM solutions consider the smoothing version of the SLAM
problem instead [7], [8], [27]–[29]. A smoothing approach
to SLAM involves not just the most current robot location,
but the entire robot trajectory up to the current time. A
significant advantage of the smoothing approach is that the
problem can be relinearized and wrong DAs can be corrected
in the SLAM front-end. An interesting comparison between
PHD-SLAM and graphSLAM is provided in [30] in which
it is shown that PHD-SLAM can outperform graphSLAM in
scenarios in which DA is very challenging. Moreover, the
authors also present the smoothing version of PHD-SLAM
called Loopy PHD-SLAM that combines beneficial properties
of both SLAM methods. As the authors discuss in [30, Ch.

3.3], their PHD-SLAM method is not very efficient and it
would benefit from a better importance density approximation
and the GM-ID proposed in this paper is a good alternative.
Moreover, in the graphSLAM front-end one needs to solve the
data association problem [8] and the method proposed in this
paper presents one alternative to model DA uncertainty and
for solving the data association problem.

VII. CONCLUSION

This paper presents a multi-hypotheses importance density
approximation to improve the efficiency and robustness of
landmark-based SLAM. By modeling the measurements and
landmarks as random finite sets, a MH-ID that incorporates
DA uncertainties is derived and a tractable GM-ID approxi-
mation is presented that can be sampled from in closed form.
In the proposed GM-ID, each mixture component represents
a single DA and the GM representation allows incorporating
multiple DAs into the importance density approximation. An
iterative method based on using generalized SLR combined
with IPL is used to compute parameters of the GM components
and a partitioned update strategy that exploits the measurement
model structure is developed.

Analysis was carried out both in a simulated environment
through MCS and an experimental outdoor Victoria Park
SLAM data set. Results demonstrated the accuracy and ro-
bustness of the proposed method, as well as, the efficiency of
the developed PHD-SLAM filter. In fact, it is demonstrated
that a single particle is sufficient to generate an accurate map
of the environment even in high clutter scenarios. The newly
proposed GM-ID approximation admits numerous possibilities
of future research into other RBPF-based SLAM approaches or
enhancements via other RFS-SLAM filters. For example, the
PMBM filter is expected to improve the robustness to clutter
and data ambiguities, improving the overall performance even
more. Moreover, the proposed GM-ID approximation could
be directly or with small modifications used in any particle
filtering SLAM approach that utilize an importance density
approximation similar to the one used in FastSLAM 1.0 and
2.0. As an example, [30] discusses that their PHD filter for
visual SLAM is not very efficient and the method would
benefit using a better importance density. In future work, the
proposed method will be evaluated with other experimental
data sets and the algorithm will be applied to other SLAM
approaches such as visual SLAM.

APPENDIX

This Appendix provides a more detailed derivation of the
approximation of g(Zk | Z1:k−1,x0:k) used in the approxima-
tion of the multi-hypotheses importance density. First, recall
that

g(Zk | Z1:k−1,x0:k)

=

∫
g(Zk | Mk,xk)p(Mk | Z1:k−1,x0:k)δMk.
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Next, we plug in (4) for g(Zk | Mk,xk), p(Mk |
Z1:k−1,x0:k) is approximated using (16) and (19), and since
the cardinality is known for each DA, we get

g(Zk | Z1:k−1,x0:k)

=

∫ Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)
∏

i:ϕt,i
k =0

[1− pD(m
i | xk)]

×
∏

i:ϕt,i
k >0

pD(m
i | xk)g(z

ϕt,i
k

k | mi,xk)

c(z
ϕt,i
k

k )

×
Mk∏

i=1

ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1) dm

1 · · · dmMk .

Re-grouping the landmarks mi from the prior with the mi

from the likelihood and moving terms independent of any mi

out of the integral yields

g(Zk | Z1:k−1,x0:k)

=
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)

×
∫ ∏

i:ϕt,i
k =0

[1− pD(m
i | xk)]

× ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1)

×
∏

i:ϕt,i
k >0

pD(m
i | xk)g(z

ϕt,i
k

k | mi,xk)

c(z
ϕt,i
k

k )

× ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1) dm

1 · · · dmMk .

Noting that any landmark mi is either detected (ϕt,i
k > 0) or

misdetected (ϕt,i
k = 0), the integral over the products can be

written as

g(Zk | Z1:k−1,x0:k)

=
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)

×
∏

i:ϕt,i
k =0

∫
[1− pD(m

i | xk)]

× ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i

×
∏

i:ϕt,i
k >0

∫
pD(m

i | xk)g(z
ϕt,i
k

k | mi,xk)

c(z
ϕt,i
k

k )

× ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i.

Finally, rearranging the integrals yields

g(Zk | Z1:k−1,x0:k)

=
Γ∑

t=1

exp(−λc)

|Z|∏

j=1

c(zjk)

×
∏

i:ϕt,i
k =0

ηik|k−1

∫
[1− pD(m

i | xk)]

×N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i

×
∏

i:ϕt,i
k >0

ηik|k−1

c(z
ϕt,i
k

k )

∫
pD(m

i | xk)g(z
ϕt,i
k

k | mi,xk)

×N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i,

which is (36).
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