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Abstract—Received signal strength (RSS) based passive lo-
calization approaches measure human-induced changes in the
electromagnetic field to localize and track people. Bayesian
estimation methods have been widely utilized to solve the
problem, mainly because of their convenience in representing
uncertainties in the models and in modeling physical randomness.
The localization performance is significantly influenced by the
measurement model that describes the electromagnetic field
changes as a function of the location of the target, and a
wide variety of empirical and analytical models have been
proposed. Common to these models is that the measurement
noise is assumed homoscedastic, that is, the measurement noise
is constant. In this paper, the measurement noise is assumed to
depend on the location of the target, and a novel heteroscedastic
Gaussian process model for RSS-based device-free localization
and tracking (DFLT) is proposed. In addition, algorithms to
train the model parameters and solve the RSS-based DFLT
problem are presented. The models and tracking algorithms
are evaluated using experiments conducted in an open-space
indoor environment and in a fully furnished downtown residential
apartment. The results imply that the proposed approach can
decrease the localization error with respect to the benchmark
RSS models and that real-time sub-decimeter tracking accuracy
can be achieved in both environments.

Index Terms—Gaussian process, heteroscedastic noise, propa-
gation modeling, received signal strength, device-free localization
and tracking, Bayesian estimation

I. INTRODUCTION

Radio frequency (RF) sensing technologies utilize pertur-
bations of the electromagnetic field for estimating physical
quantities of interest such as presence of people, crowd density,
activity, gestures, location and vital signs [1]. The attributes
“device-free”, “passive” and “sensorless” are typically used to
highlight that the technology does not require the monitored
subject, which we refer to as target from now on, to carry or
wear any active or passive device. The technology leverages
the fact that targets alter the propagation characteristics of ra-
dio signals, and these changes can be quantified at the receiver
(RX) using the radio channel estimate of the radio module.
Then, the physical quantity of interest can be inferred from the
channel estimate(s) using for example a parametric statistical
model [2] or a non-parametric machine learning model [3].
Over the past two decades, various wireless technologies have
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been used to demonstrate the capabilities of RF sensing. As an
example, dedicated hardware combined with large bandwidths
and large antenna arrays can be used for acquiring high
resolution delay and angle estimates, enabling for example
remote vital sign monitoring [4], multipath-enhanced passive
localization [5], and radio-based simultaneous localization and
mapping (SLAM) [6]. At the other end of the spectrum
are commodity wireless devices that provide received signal
strength (RSS) estimates. Even though the RSS is not as
informative as delay or angle estimates, it still conveys useful
information that can be used to realize various RF sensing
applications such as breathing monitoring [7] and localization
[8]. The main benefit of using inexpensive commodity wireless
devices is that they can be deployed in numbers forming a
dense mesh network and to perform multistatic sensing. In this
paper, we consider a multistatic sensing system, composed of
commodity narrowband wireless devices capable of measuring
the RSS, for device-free localization and tracking (DFLT).
The performance of state-of-the-art DFLT systems is signif-
icantly influenced by the measurement model that describes
the RSS as a function of target’s location. Significant research
efforts have been undertaken to model the RSS using, for
example, first principles, and it has been argued that the target
induced perturbations to the wireless channel are caused by
shadowing [9], [10], reflection [11], and/or diffraction [12],
[13]. In addition, a wide variety of empirical models have
been proposed [2], [14], [15]. Common to all these models
is that the largest RSS changes are measured physically in
between the transmitter (TX) and RX, and that the influence
decays as the bistatic range to the target increases. A major
limitation of the analytical and empirical narrowband models
is that they are unable to explain RSS changes when the
target alters an existing multipath component or when the
bistatic range is large. Another significant drawback is that the
models typically assume homoscedastic measurement noise,
that is, the RSS is assumed to be corrupted by independent
and identically distributed (iid.) random noise [3], [14], [15].
However, both theoretical [12], [16] and empirical evidence
[17], [18] suggest that the noise process is heteroscedastic,
that is, the measurement noise is dependent on the target’s
location. Fingerprint-based machine learning approaches can
capture the RSS changes as well as the heteroscedastic noise
appropriately [19]. However, collecting the fingerprints is labo-
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Fig. 1. An illustration of the proposed heteroscedastic GP model given in

(16a)—(16¢) for a link with prx = [0, 2.5] T and prx = [5, 2.5] | . Example
realization of the proposed RSS model shown in (a) and a decomposition of
the model in (b)—(d). The model expresses that the RSS is close to a global
linear model shown in (b), with the residuals (c) as well as the noise (d) being
modeled by GPs.

rious and the models are non-continuous allowing estimation
only at discrete fingerprint locations.

In this paper, we propose a heteroscedastic GP model
for RSS-based DFLT and develop four different Bayesian
localization and tracking algorithms to solve the problem. GPs
provide a Bayesian, non-parametric approach for data driven
modeling of smooth functions [20]. The main benefit of GPs
is that they allow us to model highly nonlinear RSS variations
that stem from multipath propagation [3], uncertainty can be
correctly handled, the model is continuous allowing estimation
at arbitrary locations, and prior knowledge and beliefs can be
fused into the GP model [20]. The main contributions of the
proposed GP model include: i) we relax the constraint of iid.
random noise and model the heteroscedastic noise using a GP;
ii) we explicitly model the mean function which allows us to
integrate our prior knowledge on the propagation mechanisms
into the GP model and which also improves interpretability
of the model; and iii) we incorporate prior beliefs on model
parameters by deriving the maximum a posteriori (MAP)
estimate for the parameters. The proposed model, illustrated
in Fig. 1, expresses that the RSS is close to a global linear in
parameters model with the residuals as well as the noise being
modeled by GPs. The mean function of the model, shown
in Fig. 1b, captures the baseline signal strength and target
induced RSS changes caused by line-of-sight (LOS) blockage.

The GP model for the residuals, for which a realization is
illustrated in Fig. lc, captures other slow fading phenomena
such as perturbations to existing non-line-of-sight (NLOS)
components. Lastly, a realization of heteroscedastic noise is
visualized in Fig. 1d, and the model captures hardware induced
errors, interference from co-located wireless networks, as well
as target location dependent fast fading.

The development efforts of the paper are demonstrated using
commodity radios that operate on the 2.4 GHz ISM band
and according to the IEEE 802.15.4 standard. However, it is
important to note that the developed methods can be gener-
alized to any device capable of measuring the signal strength
including Wi-Fi, Bluetooth and RFID. The experiments are
conducted in an open-space indoor environment and in a
fully furnished downtown residential apartment and in both
experiments, 20 sensors are deployed into the environment.
Using the experimental data, it is shown that the proposed
approach can decrease the localization error up to 80% with
respect to a benchmark parametric model and up to 49% with
respect to a benchmark GP model. Furthermore, real-time sub-
decimeter tracking accuracy is achieved in both environments,
using the proposed heteroscedastic GP model and a particle
filter (PF) tracking algorithm.

The rest of the paper is organized as follows. In the fol-
lowing section, the problem is formulated and required back-
ground knowledge is briefly summarized. In Section III, the
proposed heteroscedastic GP model and two simplifications
of the model are presented. Thereafter, algorithms to solve
the RSS-based DFLT problem are presented in Section IV.
Section V describes the conducted experiments with Section
VI presenting the results. Conclusions are drawn thereafter.

II. BACKGROUND
A. Problem Formulation

Let us consider a monitored area A C R? and a target
located within the area at x; € A. Let us also consider a
TX which periodically transmits sounding signals and an RX
measuring the RSS. The TX-RX pair forms a bistatic sensing
system, referred to simply as a link from now on. Typically,
the RSS of a link is modeled as a function f(-) plus additive
noise ¢; such that y; = f(x;) +¢;. If &; ~ N(0, %), the RSS
can be expressed as

Yi NN(f(Xi)an)v (1)

where f(x;) is the unknown RSS model associated with target
location x; and o2 is the measurement noise variance.

Now, the considered problem is two-fold. The first problem
is related to modeling the RSS and training the model param-
eters. Required background knowledge for the first problem
is reviewed in the following and two benchmark solutions are
presented. Thereafter, the RSS models proposed in this paper
are presented in Section III. The second problem is solving the
inverse problem, that is, estimating the target location using
unseen data. In Section IV, four different methods to solve the
inverse problem are presented.



B. Gaussian Process Regression

In this section, we briefly review GP regression and for a
more thorough introduction to GPs, see [20]. GPs provide a
Bayesian, non-parametric approach for data-driven modeling
of smooth functions [20]. In particular, assume that the random
function f : RYM>) — R is assigned a zero-mean GP prior
GP(0, k(x,x’)) with covariance function k(x,x’), that is, let

f(x) ~ GP(0, k(x,x")). 2

GP regression is usually formulated as predicting the unknown
function value f(x.) associated with a known test point x,
given a training data set D = {(x;,v;) | ¢ = 1,...,n}.
Predicting the function value can be achieved by finding the
predictive density [20]

p(f(x.) | D) = N(f(x.) | E[f (x.)], VIf (%)) 3)

with predictive mean E[f(x.)] and variance V[f(x.)]

E[f(x.)] = k! (K +0°I) "'y, (4a)
VI[f(x)] = k(xe,x0) = k] (K+0°D) ke (4b)
In the above, we have y = [y1 2 ... yn]T, K, =

k(x;,%x;) and k, is an n-dimensional vector with the ith
element being k(x.,x;).

The covariance function is a measure of the similarity
between different function values and its design and choice is
key when employing GP models. One of the most commonly
used covariance functions, which will also be frequently used
in the following sections, is the squared exponential [20]

ko (x,%') = 02 exp (—ﬁ%Hx — X/HQ) . 5)

The covariance function is parametrized by a set of hyperpa-
rameters ¢, = |02, (2] in which o and /s represent the
magnitude scale and characteristic length-scale, respectively.
The hyperparameters can be learned from data, for instance

by maximizing the marginal likelihood in (11a).

C. Benchmark Models

1) Parametric Exponential Model: Let prx and prx denote
the TX and RX positions of the link. Next, consider that the
target is at range drx(x;) = ||prx — x;|| from the TX, range
drx(x;) = ||prx — X;|| from the RX, and the TX and RX are
distance d = ||ptx — prx|| apart. Now, the bistatic range can
be expressed as

A(x;) = drx(x;) + drx(x;) — d, (6)

which defines an ellipse with TX and RX as the two foci. A
de-facto standard model for the general RSS model in (1) is
the exponential model (EM) [14], given by

f(xi) 2 h(x,), (7
A ~A(x: Hem
£ 1 exp(—A(xi)/lem)] [(ﬁem} ,

where 0 is the model parameter vector with mean parameter
tem and magnitude parameter @ep, and fey is the constant
length-scale parameter of the model.

2) Non-parametric GP Model: Rather than using a para-
metric model or modeling the different components analyti-
cally using, for example, first principles, [3] proposed to use
a GP model according to (1)—(2) instead. The main challenge
in utilizing GPs is the choice of the covariance function and
the regressors. Various choices were explored in [3] and the
best overall performance was obtained using the model

f(X) ~ QP(O, U(% + ks(el)(A(X)7 A(X/)) + kg) (X7 X/))’ (®)

in which the covariance function is a sum of a constant
covariance function parameterized using o3, and two squared
exponential covariance functions with different regressors. The
first squared exponential uses bistatic range given in (6) as the
regressor, whereas the second uses Cartesian coordinates of the
target as the regressor. The hyperparameters of the benchmark
Gaussian process (BGP) model are ¢ = |02, s (2)]

se se I°

III. PROPOSED GP MODELS

A. Homoscedastic GP Model

Instead of modeling the RSS using (1) and a zero-mean GP
prior in (2), we can explicitly model the mean function to im-
prove model interpretability and incorporate prior knowledge
to the model. The proposed homoscedastic GP model is given
by

f(x)

which expresses that the RSS is close to the exponential model
in (7) with the residuals being modeled by a GP. In this paper,
k(x,x’) is the squared exponential in (5) parameterized by
hyperparameters ¢ = [02, (2]. The predictive density is given
in (3) and since the mean is modeled explicitly, the expression
for the predictive mean changes, whereas the variance remains
the same [20]. The predictive mean is given by

E[f(x.)] = h(x.)0 + k, (K + ¢°I)"'(y — HO),

where H = [h(x1)" h(xy)" h(x,)T]".

A common way to learn the model parameters is by maxi-
mizing the marginal likelihood function [20]. The log marginal
likelihood, £y, = logp(y | ©), and its derivatives are:

~ GP(h(x)0, k(x,x')), ©)

(10)

Ly = —% (nTKgln + log|Ky | + nlog(2m)) , (11a)
36% =H'K,'n, (11b)
Lo (). oo
g% = %nTKglK;ln - %Tr (K1Y, (11d)

where Ky, = (K + 0?I) and n = y — H. Once the
marginal likelihood and its derivatives are available, the model
parameters can be trained using, for example, a gradient-based
optimizer.

If we also assume that we have a prior over the parameters,
that is, ® ~ p(@) (where ® may be any of the model 6 or GP



hyperparameters ¢), we may instead maximize the marginal
log-posterior of the parameters, given by

logp(® |y) =logp(y | ©) + logp(®),

where the prior of the parameters can typically be factorized
such that

log p(©) = log p(8)-+log p(c?)+log p(c2)+log p(€Z,). (13)

In this paper, we use the approximation p(6) = N (m,P)
since a Gaussian provides a good empirical fit to the EM pa-
rameters (see Section V-B). Respectively, the Inverse-Gamma
distribution is the conjugate prior distribution for the vari-
ance of a Gaussian distribution and for this reason, using
p(c?) = T'~!(a,b) is common in Bayesian analysis [21]. We
could assume a prior for the GP hyperparameters as well but
we decided to solely rely on data to learn the hyperparameters
such that log p(©) = log p(0) + log p(c?). The logarithm of
the prior, Lg = log p(@®), is

(12)

Lo =16 —m|3_. — Llog|P| — log(2r)
b* 9 b
+ log@ —(a+1)log(c®) — pot (14)
and its derivative with respect to 8 and o are:
0Le 1
=2 __p — 1
%6 (6 —m), (15a)
0Le b a+1
P02 o g7 (15b)

Now, the marginal log-posterior is the sum of (11a) and (14),
and is given by Lg|y, = Ly + Le. Since the derivative of the
sum of two functions is the sum of the derivatives, gradients
of the marginal log-posterior are straightforward to compute,
for example 0Lg|, /00 = 0L, /00 + 0Le/00.

B. Heteroscedastic GP Model

Instead of assuming iid. measurement noise as in (1), in the
following we assume input-dependent noise where the noise is
assumed to be zero-mean Gaussian but its variance depends on
x. We follow the works in [22]-[25] and place a GP prior on
the log noise levels to assure that the variance is positive. The
considered heteroscedastic Gaussian process (HGP) model can
be expressed as

yi ~ N(f(x:), 0%(x:)), (16a)
f(x) ~ GP(h(x)0, ks(x, x)), (16b)
log(0?(x)) ~ GP (o, kg2 (x,x)). (16¢)

Both GPs use the squared exponential covariance function in
(5) such that the model is fully specified by the EM parameters
0, GP hyperparameters ¢, and ¢, and the noise mean
hyperparameter ji5. Assuming a zero-mean GP prior for the
noise would impose an arbitrary and high noise level for the
RSS (exp(0) = 1dB?) and therefore, 1 is explicitly modeled
to control the scale of the noise process [24].

Since the GP prior through the exponential function is not
a conjugate prior for the Gaussian, the problem is no longer
analytically tractable and approximations are required. The

fully Bayesian treatment was considered in [22] using Markov
chain Monte Carlo (MCMC), the work in [23] considered
the computationally efficient MAP approach instead, and also
approximations relying on variational Bayes [24] and expec-
tation propagation [25] have been proposed. In this paper, we
utilize the MAP approach introduced in [23]. By placing a
GP prior on f(x) and assuming a noise rate function o?(x),
the predictive density is given in (3) with predictive mean and
variance, given by [22], [23]

E[f(x.)] =h(x.)0 + k! (K+%)"'(y -H6), (172
VIf ()] = k(%0 %) + 0% (x.) — k! (K + X) 'k, (17b)

where 3 = diag([0?(x1) 02(x2) 0%(x,)]) and the
other parameters are as given in (4a)—(4b). It is to be noted
that the expression for the predictive mean slightly differs from
[22], [23] since the works assume a zero-mean GP prior on
7).

The hyperparameters of the model cannot be learned di-
rectly from data and we resort to an iterative expecta-
tion—maximization type algorithm proposed in [23] which we
shortly summarize in the following:

1. Estimate a homoscedastic GP model, denoted by GP,
using D = {(x, y;)}!~, and as presented in Section III-A.

2. Compute logarithm of the empirical noise levels, i.e., z; =
log(Var(y;, GP1)) using GP; (see [23] for details).

3. Form a new data set D' = {(x;,2;)}", and use D’ to
estimate a second GP, denoted by GPs.

4. Use GP5 to predict the logarithm of the noise levels (i.e.,
log(c?(x))) and thereafter, use D again to estimate the
heteroscedastic GP model denoted by GPs.

5. If not converged, set GP1 = GP3 and return to step 2.

For more details on learning the hyperparameters, the reader
is referred to [23].

C. Heteroscedastic Exponential Model

In the following, we model the noise variance using a GP
according to (16¢c) but f(-) is modeled using the parametric
model in (7). The proposed heteroscedastic exponential model
(HEM) can be expressed using (16a) with f(x;) = h(x;)0 and
02(x;) as in (16¢). Since the mean is a deterministic function,
the predictive mean and variance are given by

E[f(x.)] = h(x.).
VIf(x.)] = o*(x.).

The procedure to train the model parameters and the GP
hyperparameters differs from the algorithm presented in Sec-
tion III-B. In the first step, instead of estimating GP; we
estimate EM;, which is a homoscedastic exponential model
given in (1) and (7). If we assume that we have a prior over
the parameters as in Section III-A and ©® = [0, 02|, we can
maximize the marginal log-posterior

logp(® | y) =logp(y | ©) + log p(8) + log p(c?),

(18a)
(18b)

19)
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Fig. 2. Example model predictions using the benchmark EM, benchmark GP and the proposed HGP model. In the figures, the gray solid line illustrates the
true RSS signal, the dashed gray lines visualize the 95% confidence interval, the black dots represent the measurements, the model prediction shown with
the solid red line and the predicted 95% confidence interval illustrated using the transparent red region.

in closed-form. This is achieved by computing the gradients
of log p(® | y) with respect to the parameters

oL 1 1
a<Z|y _ ﬁHT(y —HO) — ﬁpfl(e —m), (20a)
8£@| 1 n
502 = 351 Iy —HOI* + 1|6 —mllp- +2b) — o,
(20b)

where # = n + 2 4+ 2(a + 1). Then, setting the gradients to
zero and solving for the parameters independently yields the
MAP estimates

0=A""'b, (21a)

1
>==-(y'y-b'A7'"b+m P 'm+2b), (21b)

n
where A = HH+P!and b =H'y + P 'm. Note

that the maximum likelihood estimate (MLE) proposed in [26]
can be easily obtained from (21) using noninformative priors
P! =0and a,b — 0, which yield O, = A~'b and 62,, =
liyTy - bTA_1b2, where A=H Hand b=H"y.
After computing 8 and &2, we can proceed to estimate hy-
perparameters of the noise process. The second and third step
of the procedure are performed as explained in Section III-B
with the exception that GP; is replaced by EM;. Thereafter,
the algorithm is terminated and the obtained GP model can be

used to compute the predictive variance in (18b).

D. Discussion

The proposed HGP model is visualized in Fig. la and
the model expresses that the RSS is close to a global linear
model with the residuals as well as the noise being modeled
by GPs. The explicit mean function is illustrated in Fig. 1b
and it captures the average received power and target induced

perturbation when the bistatic range is small [27]. The covari-
ance function in (16b), with an example realization illustrated
in Fig. 1c, is a measure of the similarity between different
residual values and it captures various propagation phenomena
that cannot be explained by the exponential model. These
include diffraction effects [13], [16], new multipath created
by reflection from the target [11], and perturbation of existing
multipath [3], [18]. Lastly, the input-dependent measurement
noise is modeled using a second GP and an example realization
is visualized in Fig. 1d. In many real-world applications,
including the one considered in this paper, the assumption of
constant variance can be unrealistic, and it is highly desirable
to consider models with input-dependent variance, as we will
display in Section VI.

To demonstrate properties of the proposed HGP and bench-
mark models, we create a synthetic RSS data set, train the
models on that data, and compare the model predictions
to the ground truth. In the following, RSS is modeled ac-
cording to (16a)—(16¢c) with parameters 8 = [—60, —1O]T,
by = 2, 2X)?]T, po = —2 and ¢,z = [2, (4X)°] in
which A\, = 12.5cm is the wavelength. The ground truth
RSS values are visualized Fig. 1a and the different models
are trained using D = {x;,y;}}_; in which x;’s evenly cover
the 5 x 5m? area at 0.1m intervals so that n = 2601.
The equispaced test trajectory is illustrated in Fig. la using
a black dashed line, and the RSS and model predictions
along the trajectory are shown in Fig. 2. As illustrated, EM
is neither capable of explaining the RSS nor the variance
very accurately. The benchmark GP model clearly outperforms
the parametric model but the model clearly overestimates the
variance in some areas and underestimates it in others. The
proposed HGP model accurately captures the signal statistics,



TABLE 1
MODEL SUMMARY AND EQUATIONS TO COMPUTE THE PREDICTIVE MEAN
M1,k AND PREDICTIVE VARIANCE Ulzk

Name Abbr. Model Bk ai b
Benchmark EM EM (1) and (7) @) )]
Benchmark GP BGP (H-(2) (4a) (4b)t

Homoscedastic GP GP (1) and (9) (10) (4b)t
Heteroscedastic GP HGP (16a)—(16¢) (17a) (17b)
Heteroscedastic EM | HEM | (16a), (7) and (16¢) | (18a) (18b)

TPredictive variance is computed as 02, = V[f;(x})] + o2, since we
must include the noise variance 012 as we are predicting noisy y; , [20]

since the estimated mean and variance closely resemble the
ground truth values. It is also interesting that the mean of the
proposed model is smoother than the mean of BGP which is
quite jagged—possibly due to the fact that BGP uses three
covariance functions.

IV. LOCALIZATION AND TRACKING

In the previous sections, modeling the RSS and training
the model parameters for a single link has been considered.
However, to enable accurate inference, a single link may not
be sufficient. Therefore, S wireless sensors are deployed in
the monitored area, P = {p; € A|j=1,...,5}, and each
sensor can transmit and receive to other sensors of the network.
Assuming full connectivity, the considered multistatic sensing
system has L = S x (S — 1) unique bistatic links, indexed by
1 e€{1,2,..., L} in the following. Since the model parameters
are unique for every link, training is performed independently
for the links [3]. The presented localization and tracking
methods require computing the predictive mean and variance
for link [ and time instant k, denoted from now on using y; j
and aik, respectively. The different models are summarized
in Table I as well as the equations to compute 1 and ‘712, K

A. Localization

To localize a target (i.e., estimate its position) at time
instant k given previously unseen data for L links y;, =
{v1,k:Y2,ks---,YL .k}, We can maximize the predictive log
marginal likelihood with respect to the unknown xj. The
predictive marginal likelihood for L links is given by [20]

L
pye | x6) = [ TN iws w070,
=1

(22)

where y; 1, and o7, are given in Table I. Localization amounts
then to maximizing the log marginal likelihood according to

% = argmax (logp(yr | xk)), (23)

Xk

in which the predictive log marginal likelihood is given by

1o (yik — k)
log plys | k) = —5 ) log(2mofy) + 55Tt (24)
=1 Lk

B. Tracking

Recursive Bayesian filtering computes the marginal poste-
rior distribution, p(xy, | y1.x), of the state x; at time step k,
given the sequence of measurements y1.x = {y1,...,¥&} up
to time instant k. Starting from the posterior at time step k—1,

the recursive equations to compute the marginal posterior dis-
tribution is given by the following Bayesian filtering equations.
The prediction step of the Bayesian filtering recursion can be
computed using the Chapman-Kolmogorov equation [28]

o [ yin) = [ oo | i )pGous |y,
(25
in which p(xy | xx_1) is the transition density. Once mea-
surement yy, is available at time k, the predictive distribution
can be updated using the Bayes’ rule [28]

p(xk | Y1) = Pk | Xk)p(Xk | y1:k-1)

' Sy | xi)p(xk | yip-1)dxy’
where p(y | xx) is the likelihood function. The considered
problem does not admit a closed-form solution to the Bayesian
filtering recursion and therefore, three different approxima-
tions are presented in the following.

(26)

1) Grid-based Filter (GF): In the considered problem,
the continuous state space can be decomposed into N cells
{x{ : 1,...,N} in which each cell represents a possible
target location. Discretization of the state space allows us
to approximate the posterior density using a grid-based filter
(GF) as follows. Let us assume that the approximation of the
posterior at time k£ — 1 is given by [29]

N

P(Xk—1 | Y1p-1) & Zwllc—nk—ld(xk—l —Xj_1),

i=1

27

where w,i_l‘k_l £ Pr(xg—1 = Xi_, | ¥1.k—1) is the condi-
tional probability of state x;_; given measurement sequence
Yik-1 = {¥y1,-.-,¥k-1}, and 6(-) denotes the Dirac delta
function. The prediction step of the GF is given by [29]

N
PXk | yin-1) ® > whi_10(xk — X3,), (28)
i=1
N . .
Whik-1 = Zwi—1\k—1p(xi | x7_1),
j=1

where p(xi | xi_l) is the transition density. After observing
Y&, the GF posterior can be updated according to [29]

N
poek | yin) = ) whd(xk — x3), 29)
=1

wz\k—ﬂ)(}’k | x}.)

~ - .
Z_j:l wi\k_lp(ylc ‘ Xi)

iy
Wi ~

where the likelihood, p(yy | x%), is computed using (22). The
cell in which the posterior has a global maximum is then used
as the location estimate, mathematically expressed as

X, = argmax p(xg | y1.x)- (30)
Xk
In this paper, we use a Gaussian transition density
p(xp | xk—1) = N(xp | Farxp—1, Qqr) (€1))



in which Fyr and Qg are the time-invariant transition matrix
and process noise covariance, respectively.

2) Kalman Filter (KF): Next, we present a two-step ap-
proach for tracking the target. In the first step, (23) is computed
at time step k£ in order to obtain a positioning measurement
zj, < (23). In the second step, z is used as a measurement
input to a Kalman filter (KF) which recursively computes the
marginal posterior distribution, p(xy, | z1.), of state x.

The Bayesian filtering equations are recursively computed
using the KF algorithm as presented in [28, Eq. (4.19)] which
requires that the posterior, transition density and likelihood
function are Gaussian

(32)
(33)
(34)

p(xk | 21:k) = N(Xk | Xk, Pi),
p(xk | Xp—1) = N (% | Fiuxi—1, Qke),
p(zi | xi) = N(zp | Hxg, Ri).

In (32), X5, and P}, denote the posterior mean and covariance,
respectively; in (33), Fy is the transition matrix and Qs the
process noise covariance; and in (34), Hyy is the measurement
model and Ry the measurement noise covariance.

It is to be noted that even though the Kalman filter is the
closed-form solution to the Bayesian filtering equations, the
proposed two-step approach is expected to perform subopti-
mally. The reason is that the conversion from nonlinear RSS
measurements to linear position measurements introduces a
notable discretization error and also transforms the measure-
ment noise so that p(zy | xx) is unlikely Gaussian.

3) Particle Filter (PF): The PF uses a weighted set of NV
particles {(x%,w!) : 1,..., N} for representing the posterior
distribution [30]

N

Pk | y1k) = Y who(xk — X}),
i=1

(35)

and the weights satisfy the recursion

p(yr | xp)p(x; | xj_1)
Q(X;‘g ‘ Xi_ka)

In (36), p(yx | x}) is the likelihood given in (22), p(x} |

xi_,) is the transition density, and q(x% | xi ,,yx) is the

importance distribution. The posterior distribution is approx-

imated using the bootstrap PF [31], in which the dynamic

model p(x} | xi_,) is used as the importance density, and
the algorithm at time instant k is implement as follows:

Wy, X W,_q

(36)

1) For every particle, sample from the transition density

xj ~p(xg | xi_1), i=1,...,N. (37)

2) Compute the weights

wi o wi_p(y | %), i=1,...,N.  (38)
3) Normalize the weights w}, = w} / Z;V w] and resample
if the effective number of particles is below threshold T¢¢

1
5 < Tefs.

—_— (39)
S (wh)

The PF is implemented using a Gaussian transition density

p(xp | xp—1) = N(xk | Fro1xie—1, Q1) (40)

in which F;,_; and Qj_; are the time-variant transition matrix
and process noise covariance, respectively.

V. EXPERIMENTS
A. Experimental Setup

We utilize a publicly available dataset [27] which we
summarize in the following for the sake of completeness.
The development efforts of this paper are validated in two
different experimental environments and using 20 sensors. The
used sensors are Texas Instruments CC2531 USB dongles [32]
shown in Fig. 3a. The sensors communicate in a round-robin
schedule in which one sensor broadcasts at a time while the
other sensors listen, measure the RSS and append the RSS to
the payload of the next packet they transmit. The sensors com-
municate on the 2.4 GHz ISM band (). ~ 12.5cm) using all
16 frequency channels defined by the IEEE 802.15.4 standard
[33] and on average, the time interval between transmissions
is 7 &~ 2.9ms. A base station (BS) that listens to the ongoing
transmissions extracts the RSS from the packets for centralized
processing. The considered multistatic sensing system has
20-(20—1)-16 = 6080 unique bistatic links but it is to be noted
that full connectivity nor multi-channel communication is not
mandatory. The used hardware and communication protocol
are further explained in [34].

The first experimental environment is an open-space indoor
environment in which each sensor has LOS propagation con-
ditions to every other sensor, and multipath propagation is
scarce. The sensors are set on top of podiums at a height
of 90cm and deployed around a 75m? area as illustrated
in Fig. 3b. The second experimental environment, shown in
Fig. 3c, is a fully furnished two bedroom downtown apartment
in which multipath propagation is severe, and NLOS prop-
agation conditions prevail. The sensors are deployed evenly
throughout the 82m? apartment and installed by electric
sockets of the apartment at various heights—most of the
electric sockets locate slightly above floor level while some
locate above bathroom and kitchen countertops.

Reference positions are measured and marked in both
experimental environments (see Figs. 3b and 3c). During
the experiment, the target stands still for a few seconds in
one of the reference positions after which the target walks
to a different reference position along a straight line and
trying to maintain a constant speed. During the experiment
the target visits the reference positions in no particular order
and some reference positions are visited multiple times. In
both environments, three different trials are conducted and
each trial is approximately three minutes long. The target
is carrying a video camera and the video is used in post-
processing to define the departure and arrival times at every
reference position. Subsequently, the ground truth trajectory
is generated by interpolating between the reference position
coordinates and annotated time instances. Since this method is
subject to small errors, the localization and tracking accuracy
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are evaluated only when the target remains stationary to ensure
the ground truth position is accurate.

B. Training

The data that is gathered when the target is moving is
used for training the models, whereas the data collected when
the target is stationary is used for validation. Since the exact
departure and arrival times are hard to determine from the
videos, the half a second time period before the target starts to
move and after the target stops are removed from the validation
data and appended to the training data. The aggregated training
and validation time periods ranged between 101-111 and
63-77 seconds, respectively. To put this in terms of RSS
measurements per link, the average number of training and
validation measurements ranged between 106-113 and 64-83
samples, respectively.

The model parameter priors, p(®;) in which ©; =
[0, 0?],1 € {1,...,L}, are determined from experimental
data as follows. We use another similar set of experiments but
using 20 different TI CC2531 USB dongles that communicate
on four frequency channels instead. The experimental envi-
ronments and sensor locations are the same as described in

Section V-A. The MLE of the parameters are computed using
(21) with noninformative priors. Histograms of the estimated
model parameters are visualized on the top and middle row
of Fig. 4. Thereafter, the model parameter estimates from the
open-space and apartment experiments are combined and a
distribution is fitted to the combined data. Lastly, the fitted
distribution is used as the prior when training the models.
The model parameter priors are: u ~ N(—69.21,69.63),
¢ ~ N (—2.20,17.36) and 02 ~ I'"1(1.19,2.02). It is to be
noted that variances of the priors are relatively high such that
the priors are not very informative.

During the development phase of the algorithms, we found
out that the proposed HGP model performs better, if the
predictive mean of the noise levels is used as the predictive
variance, instead of using the expression given in (17b). We
believe the problem is with the gradient-based optimizer which
has a tendency of overfitting the model since the training
data is sparse. In future research, this problem will be further
investigated and other methods for parameter inference such as
MCMC and Hamiltonian Monte Carlo (HMC) methods [35]
will be tested.

C. Experimental Parameters

In the next section, we evaluate the performance of five
different RSS models as well as four different localization
and tracking algorithms. The parameters of the models and
algorithms are defined as follows.

o Model Parameters — these are determined from training
data except the length scale parameters of the EM and
GP models. As in [3], the length scale parameters are
fixed to lem = Ac/4 and fge = 2.

o Localization — The predictive marginal likelihood in (22)
is computed using L = 380 and the MLE in (23) is
computed using a grid search with 6, = 12.5cm grid
spacing. The number of links L corresponds to one round-
robin cycle, that is, one transmission by every sensor
meaning that the MLE is computed once every 58 ms.

e Grid Filter (GF) — As in localization, the likelihood in
(22) is computed using L = 380, the grid spacing is
0x = 12.5cm and the sampling rate is 7of = 58 ms. The
GF is implemented using a Gaussian random walk model
as the transition density with the power spectral density
of the process noise in (31) set to g = 0.01 such that
Qg = qurTerl2 and Fygp = I,
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Fig. 5. The predictive log marginal likelihoods of the three models in one example position.

with (X).

e Kalman Filter (KF) — The MLE in (23) is computed
using the same parameters as in localization and the
MLE is used as measurement input to the KF. The KF
is implemented using a second-order kinematic model,
given by [36]

o X lTk3f %Tka
] v Que =12 Q@ qur Bﬁ?t e |
(41)
where @ denotes the Kronecker product, 74 = 58 ms is
the sampling rate and g 1.0 is the power spectral
density of the process noise. The measurement model

1 Tkf

ka—12®[0 1

(b) Benchmark GP

(c) Proposed HGP model

The ground truth location illustrated using (O) and the estimate

variance for link [ is denoted by Var[y;]. The localization and
tracking accuracy is assessed using the RMSE and it is defined

as: 1
2
1 .
ex = (K [k — Xkll%)

where x; and Xj denote the ground truth location and its
estimate for test location k in respective order, and |-||3
denotes the square of the Euclidean norm.

K

>

k=1

(43)

VI. EXPERIMENTAL RESULTS

matrix in (34) is Hy = I, ® [1 O] and covariance of A. Modeling Results

the measurement noise is Ry = afflg in which variance
of the measurement noise is og; = 0.1 m?.

Particle Filter (PF) — Non-linear filters enable the mea-
surements to be processed sequentially according to their
true transmission time instant allowing a more accurate
description of the time evolution [26]. Thus, the like-
lihood in (22) is computed using L = 19 and the PF
sampling rate is set equal to the transmission interval,
that is, 7 2.9ms. The PF is implemented using a
Gaussian random walk model as the transition density
with the spectral density of the white noise in (40) set
to gpr = 0.1 such that Qp = qpr7pel2 and Fyr = Iy, The
number of used particles is N = 10 and the effective
sample size threshold is Tegr = N/2. We also tested the
second-order kinematic model with the PF, but the model
did not provide any significant advantage over the random
walk model while requiring significantly more particles
because of the higher state dimension.

~
~

D. Evaluation Metrics

The following measures are computed for assessing the
performance of different methods: the standardized mean
squared error (SMSE) and the localization root mean squared
error (RMSE). The SMSE measures the modeling accuracy
and it is defined as:

AN o

11l=1

ylk_,ulk)

42
Varlyd (42)

where 1 5, is the predictive mean (see Table I) for the test
sample and y; ; is the actual RSS value. The training data

The parametric EM model is widely used in DFLT and
the model is able to capture RSS changes when the target
is blocking or in the vicinity of the link line. A downside
of the model is that it is unable to explain, for example,
single-bounce reflections and perturbations to existing multi-
path components. The BGP model can capture various signal
propagation patterns, including link line blockage, single-
bounce reflections, as well as perturbations of existing NLOS
paths [3]. The proposed HGP model has similar expressiveness
as BGP since the EM model is used as the mean function
and the covariance function captures the more complex signal
propagation patterns that cannot be explained with simple link
line geometry. The modeling errors are tabulated in Table II
and we can conclude that the GP models are superior with
respect to the EM model. Moreover, the GP models yield
similar performance, HGP slightly outperforming BGP. Since
(42) is not a function of the predictive variance, the proposed
heteroscedastic EM and homoscedastic GP models yield the
same modeling accuracy as EM and HGP models, respectively.

Ideally, the predictive log marginal likelihood in (22) should
be unimodal so that the peak coincides with the true target
location, and elsewhere the value should approach p(yy |
xj) — 0 as the distance to the target grows. The predictive
log marginal likelihoods of the three models in an example
target location are illustrated in Fig. 5. Now, the benefit of
the HGP model is apparent, since the predictive log marginal
likelihood is very low everywhere except in the close vicinity
of the true target location and the peak is in the same cell as the
target. The predictive log marginal likelihood of the BGP and
EM models are not as concentrated and typically the values
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TABLE II
SUMMARY OF LOCALIZATION AND MODELING ERRORS
Experiment / Open Apartment

Model ex [cm] ey [dB] ex [cm] ey [dB]

EM 62.1 £54.6 1.00 120.6 £ 86.5 0.97
BGP 24.3 £22.0 0.78 38.4+35.9 0.76

Gpt 19.8 £16.7 0.76 34.3+29.9 0.74
HGPT 12.5+8.7 0.76 29.4+27.3 0.74
HEMT 21.2+17.0 1.00 47.9 £42.9 0.97

TModel proposed in this paper

are much higher than with the HGP model. Moreover, the
predictive log marginal likelihood of the BGP and EM models
is more frequently multimodal, which can have significant
ramifications to localization which we will elaborate on in
the next section.

B. Localization Results

The localization RMSE =+ one standard deviation results
are presented in Table II and the Cramér-Rao bound (CRB)
for the discretized MLE in (23) is 5,(/\/6 ~ 5.1 cm [26].
Moreover, the localization error cumulative distribution func-
tions (CDFs) are illustrated in Fig. 6a and example localization
performance in the open-space and apartment experiments are
illustrated in Fig. 6b and Fig. 6¢c, respectively. The results
indicate that the EM model yields the least accurate local-
ization performance, the proposed HGP model provides the
best localization accuracy, and the performance of the other
models is somewhere in between. The results suggest that, as
the heteroscedastic EM model outperforms the homoscedastic
EM model, it may be beneficial to treat the measurement
noise as non-iid.. In addition, since the homoscedastic GP
model slightly outperforms the homoscedastic BGP model, it
is advantageous to explicitly model the mean function instead
of using a zero-mean GP prior. The HGP model uses an
explicit mean function and accounts for heteroscedastic noise
resulting in superior accuracy—the proposed model decreases
the localization RMSE by up to 80 % with respect to the EM
model and by up to 49 % with respect to the BGP model.

The localization error CDFs illustrated in Fig. 6a reveals the
advantages and disadvantages of the models. Clearly, the GP
models yield higher localization accuracy than the EM model
and this notable advantage mainly comes from the GPs ability

to model perturbations of existing multipath components. The
difference between BGP and HGP is more subtle, and the
main difference is that the error distribution of the BGP
model is heavier-tailed. The reason for this behavior stems
from the predictive log marginal likelihood of the BGP model
which is frequently multimodal. Moreover, the peak closest
to the ground truth target location is not always the one that
has the highest value and as an outcome, the wrong local
maxima is taken as the estimate which can be very inaccurate.
The proposed HGP model is not immune to such unwanted
behavior but suffers from it less frequently and therefore, the
error distribution is not as heavy-tailed as with the BGP model.

C. Tracking Results

The results in the two experimental environments using
different models and tracking filters are summarized in Ta-
ble IIT and as expected, the accuracy improves when the time
evolution is taken into account. The results indicate that the
EM model yields the least accurate tracking performance and
the proposed HGP model provides the best overall tracking
accuracy. In the open-space experiment, the homoscedastic
GP model yields the best accuracy using the GF, the HGP is
the most accurate using the KF, and the BGP has the lowest
RMSE when using the PF. In the apartment experiment, the
proposed HGP model yields the lowest RMSE with all filters.
It should be noted, however, that the differences between the
GP models is rather small especially when considering that the
tracked target is not actually a point in space. A more accurate
representation of the target is a cylinder and the RMSE of the
GP models is within or on par with the spatial extent of the
cylinder.

In the following, properties of the different tracking filters
are analyzed and for brevity, the analysis only considers
the HGP model. The tracking error CDFs are illustrated in
Fig. 7a and example tracking performance in the open-space
and apartment experiments are illustrated in Fig. 7b and
Fig. 7c, respectively. The main difference between the tracking
filters is the discretization of the target state and how outlier
measurements impact the filter update:

o Discretization — The GF divides the monitored area into

equally spaced grid cells and the filter is sub-optimal
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TABLE III
SUMMARY OF TRACKING ERRORS (RMSE =+ STD)

Expt. Model GF [cm] KF [cm] PF [cm]
Open EM 12.8+5.9 29.4 + 20.8 123+74
Open BGP 89+4.1 11.2+8.6 7T7+50
Open GPt 8.8 +3.8 10.2 4+ 7.2 8.8 4+4.8
Open | HGP? 9.3+4.4 6.5+3.9 7.9+43
Open HEMT 11.0+5.3 10.0+£6.9 10.6 = 5.6
Apt. EM 55.7 + 40.6 65.4 + 39.8 24.9+17.0
Apt. BGP 12.3+8.5 174+ 14.8 10.1+7.0
Apt. GPf 14.7+10.9 17.44+13.8 11.24+7.0
Apt. HGP' 106 £ 7.1 16.3 +14.1 95+55
Apt. HEMT 14.1£9.0 28.4 +23.2 13.6 7.2

TModel proposed in this paper

since the underlying state space is not truly discrete
in nature. The state space of the KF is continuous but
discretization also degrades the filter accuracy since the
input measurements of the KF are quantized by the MLE
in (23). The PF circumvents the discretization problem
by representing the continuous state space using a set of
particles and therefore, the posterior approximation of the
PF is more accurate than with the GF and KF.

Outliers — As already discussed in the previous sections,
the predictive log marginal likelihood in (22) is occasion-
ally multimodal and the maximum peak is not always the
one closest to the ground truth state. Since the posterior
of the GF is proportional to the product of the likelihood
and the prior, the prior typically suppresses the peaks that
are far away from the tracked target so that the maximum
peak is the one closest to the ground truth state. The KF
is sensitive to outlier measurements (see e.g. coordinate
(9,1) m in Fig. 7¢) and therefore, the error distribution of
the KF is heavier-tailed than with the GF. The multimodal
likelihood function typically does not impact the PF since
the likelihood is only evaluated at the particle support
points which are concentrated near the ground truth state
as long as the prior is not biased.

Using a Matlab implementation on a Dell Precision 3591
computer equipped with a Intel Core Ultra 7 CPU and 64
GB of memory, the time to process a data sequence of 177.9
seconds takes 33.8s, 19.9s and 96.7 s with the GF, KF and PF
algorithms, respectively. Thus, a real-time implementation of

all the algorithms is possible. There exists a trade-off between
computational complexity and accuracy since the computation
time of the PF algorithm can be reduced using fewer particles,
whereas the efficiency of the GF and KF algorithms can be
improved by increasing the grid-spacing. As an example, if the
grid spacing is doubled (dx = 25cm), the RMSEs increase to
11.0cm (GF) and 8.7 cm (KF) in the open-space experiments,
whereas the processing times decrease down to 4.8 s (GF) and
3.5 s (KF). In the end, the preferred choice of the tracking filter
depends on the application. If a low complexity algorithm is
desired than a good choice is either the GF or KF, whereas
the PF should be used in applications requiring best possible
tracking accuracy.

VII. CONCLUSIONS

This paper presented a heteroscedastic GP model for RSS-
based DFLT. By modeling the RSS with a normal distribution
having a GP prior on both the mean and log noise levels,
complex signal propagation patterns and target location depen-
dent measurement noise can be modeled. The explicit basis
function of the GP prior on the mean captures the baseline
signal strength and target induced RSS changes caused by LOS
blockage, whereas the covariance function captures other slow
fading phenomena such as perturbations to existing NLOS
components that cannot be explained with simple link line
geometry. Respectively, the GP prior on the log noise levels
captures not only hardware induced errors and interference
from co-located wireless networks, but also target location
dependent fast fading. In addition, we presented algorithms
to train the model parameters as well as solve the RSS-based
DFLT problem.

Analysis was carried out in an open-space indoor environ-
ment experiment and in a more complex residential apartment
experiment in which NLOS propagation conditions prevailed.
Results demonstrated that the proposed model improved the lo-
calization and tracking accuracy with respect to parametric and
non-parametric benchmark models. Moreover, it was demon-
strated that real-time sub-decimeter tracking accuracy can be
achieved in both experimental environments using a PF and
the proposed heteroscedastic GP model. The newly proposed
model admits numerous possibilities of future research into



other heteroscedastic GP model approaches, improvements
via alternate training procedures, or enhancements via more
sophisticated tracking filters. For example, with sparse data
the gradient-based optimizer has a tendency to over-fit the
model resulting in overconfident predictions and therefore,
alternative training procedures such as MCMC [35] will be
investigated. Also, other heteroscedastic GP approaches will
be explored including variational Bayes [24] and expectation
propagation [25]. Lastly, sigma-point filtering [28], iterated
posterior linearization [37], and random finite set based filters
[8] are potential candidates to improve the accuracy and/or
efficiency of tracking, and these methods will be studied in
future research.
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TABLE IV

PERFORMANCE SUMMARY (RMSE + STD)

Expt. | Model MLE [cm)] GF [cm] KF [cm] PF [cm]

Open EM 62.1 £+ 54.6 12.8+5.9 29.4 + 20.8 123+74
Open BGP 24.3+22.0 8.9+4.1 11.2+ 8.6 7.7+5.0
Open HGP 12.5 + 8.7 93+4.4 6.5+39 79+4.3

Apt. EM 120.6 £86.5 | 55.7 +40.6 65.4 + 39.8 24.9+17.0
Apt. BGP 38.4+35.9 12.3+8.5 17.4 + 14.8 10.1+7.0
Apt. HGP 2944273 | 106+7.1 | 16.3+14.1 9.5+55




