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Abstract—In this paper, we consider the solution of encrypted
linear regression using Homomorphic Encryption. We propose a
method in which each mathematical operation is performed over
encrypted real numbers. This method allows the computation of
linear regression in an encrypted environment without the need
to modify the original dataset and does not require additional
techniques for the calculation of matrix multiplications. The
proposed method consists of an iterative method based on
a modified Goldschmidt sequence. Numerical results on both
synthetic and real data show that the method converges with
minimal accuracy loss due to encryption noise, indicating that our
approach is well-suited for homomorphically encrypted linear
regression.

Index Terms—Linear Regression, Homomorphic Encryption,
CKKS, Secure Computing, Machine Learning

I. INTRODUCTION

Predicting a continuous outcome based on one or more
predictor variables is fundamental in machine learning and
data analysis. Linear regression is a simplistic yet powerful
and principled statistical approach to model the relationship
between variables [1]. However, performing linear regression
over large amounts of data might be expensive in terms of
computational cost. To overcome this problem, cloud com-
puting can be used, which involves using shared servers
managed by third-party providers. Since the data used in
the cloud might be sensitive, it raises the need to provide
a privacy-preserving environment. This can be achieved with
Homomorphic Encryption (HE), which allows computations
on encrypted data without decrypting it [2]. In this way,
it is possible to share data with third-party providers while
maintaining privacy.

However, HE schemes, such as the Cheon—Kim—Kim—-Song
(CKKS) scheme [3], have strict constraints, such as the types
and number of operations that can be computed on encrypted
data. Hence, great care needs to be taken when implementing
algorithms using HE. One of the most significant obstacles
is the number of sequential operations that can be computed.
Typically, HE schemes only support addition and/or (a limited
number of) multiplications [4]. Hence, since divisions, and
in particular matrix inverses are not supported, one has to
resort to iterative algorithms to solve problems such as linear
regression. However, classical iterative methods, such as the
Gauss—Seidel method [5] require a large number of iterations,
see Figure 1.
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Figure 1: Comparison of the average NED (Normalized Euclidean
Distance) over 100 tests for the computation of linear regression using
randomized matrices of size 5 X 5. We can observe that the Gauss—
Seidel method continues to converge, but it requires a large number
of iterations. In contrast, our approach based on [6] converges quickly
to a solution with an acceptable error.

Linear regression using HE has been considered in [7]
and [8]. However, these methods do not compute all the
operations in an HE environment. In particular, the methods
rely on plaintext client-side matrix inversion. Furthermore,
in [9] a method for linear regression is proposed based on
the Paillier encryption scheme [10]. The Paillier scheme is an
additive homomorphic encryption scheme that only supports
addition and scalar multiplication, that is, multiplication be-
tween an encrypted number and a plaintext number, requiring
additional techniques such as additive secret sharing, secure
fixed-point arithmetic, and interactive protocols to compute the
dot product between matrices. Moreover, the Paillier scheme
allows only integer numbers, making it challenging to handle
real numbers directly, which can lead to precision loss [9].

In contrast, our approach utilizes the CKKS encryption
scheme which supports both addition and multiplication on
real or complex numbers. This allows the computation of
linear regression in an encrypted environment and does not
require additional techniques for the computation of matrix
multiplications. In particular, the contributions of this paper
are:

o a method that allows the computation of linear regres-
sions in an encrypted domain where each mathematical
operation is performed over encrypted real numbers;

o a thorough analysis of the computational complexity of
the proposed algorithm;



« evaluation of the method on synthetic and real data.

II. BACKGROUND
A. Linear Regression

Linear regression is a model that describes a linear rela-
tionship between a dependent (noisy) variable y € R% and
an independent variable (parameters) x € R%  according to

y =Hx+r, (D)

where H € R9 >4 ig the observation matrix and r € R
is a noise term. The observation matrix is obtained starting
from a dataset D defined as a collection of input-output pairs
{(w;,y:)}Y, where u; € R% are the regressors (inputs) and
y; € R are the corresponding target vectors (outputs) for each
sample . The observation matrix is then constructed as

uy]” . )

One way to estimate the parameters of this model is to
use the least squares method [5]. Given the model (1), this is
equivalent to solve the system

H= [ul U2

Ax=b (3)
where
A =H"H, (4a)
b=H"y, (4b)

which has the analytical solution
x=(H'H)'H y. (5)

As shown in (5), the core of this method is to invert the matrix
A = HTH and compute the product b = HTy. Typical
approaches for matrix inversion can be computed using one
of the classical iterative methods such as Gauss elimination or
Cholesky decomposition, see [5].

B. Homomorphic Encryption

In this study, we focus our interest on computing linear
regression in an encrypted environment. To achieve this, we
use HE [11], a kind of encryption that allows computations on
encrypted data without decrypting it. The core of this type of
encryption is the use of a homomorphism, defined as a function
f such that [12]

flaob) = f(a)o f(b)

where the symbol ¢ represents any given operation. It follows
that if we apply the inverse function f~! we obtain

FH(flaob)) = f7(f(a) o f(b)) = aob.

In HE, the functions f and f~! represent the encryption
and decryption functions encr and decr respectively. Hence

encr(a ¢ b) = encr(a) ¢ encr(b)
decr(encr(a ¢ b)) = decr(encr(a) ¢ encr(b)) = a o b.

In this work we use the CKKS scheme [3]. This HE scheme
is designed for approximate arithmetic with real or complex
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Figure 2: Example of multiplications in layered HE. When a multi-
plication is computed it consumes one level, and the result will be
on a new level. Multiple sequential multiplications consume multiple
levels. In this example, the different multiplications consume a total
of three levels. Thus, the depth cost of these multiplications is equal
to 3.

numbers and supports additions and a limited number of
multiplications, making it a so-called leveled HE scheme [13].
Furthermore, the scheme is approximate due to the way noise
is added during encryption.

It follows that the result of an encrypted operation will not
be exact, but approximate, that is,

decr(encr(a) ¢ encr(b)) &~ aob

Furthermore, the CKKS scheme allows us only to compute
additions and multiplications. As discussed above, it is a lev-
eled method, which means that each sequential multiplication
consumes one level, see Figure 2. The number of available
levels is set by specific parameters before encryption.

To overcome the problem of a limited number of mul-
tiplications, Gentry [2] proposed a bootstrapping method,
which has also been implemented for CKKS [14]. However,
bootstrapping is an expensive operation which significantly
increases the computational complexity of the algorithm. Thus,
it is often desirable to avoid bootstrapping in practice, and we
shall not consider it in this work.

III. METHOD

To solve (3) one can use iterative numerical methods, such
as Gauss elimination, Cholesky decomposition, or gradient
descent. However, these methods typically require a relatively
large number of multiplications and divisions, rendering them
not feasible to use together with CKKS. Moreover, these meth-
ods require divisions and other operations such as comparisons
or absolute values that require a large number of levels [5],
[15]. For these reasons, implementing linear regression in the
HE environment is challenging. Instead, we propose the use
of a modified Goldschmidt algorithm, first proposed in [6].

It is important to notice that in a HE environment, it is not
possible to use the result of a comparison between values to
terminate an algorithm, since the result of this comparison
would be an encrypted number and cannot be used for a
stopping criterion. Thus, no comparisons are used to stop
the algorithm upon reaching a certain accuracy. Instead, the



Algorithm 1 Modified Goldschmidt Algorithm

Algorithm 2 Linear Regression

Function: GoldschmidtAlg

Input: 7y, Ag, niter

for i = 1 to n;se, do
Zi—Zia+Zi 1A
Ai — A?il

end for

return Z;

algorithm is run for a predefined number n;s, iterations,
where n;¢e, 1 the maximum number of iterations that can be
computed. This maximum is determined by specific encryption
parameters and may vary accordingly.

A. Linear Regression using Modified Goldschmidt Algorithm

The proposed method solves the system (5) by numerically
finding the inverse A~!. In particular, our approach is based
on the modified Goldschmidt’s algorithm proposed in [6] and
shown in Alg. 1. Our approach consists of three steps.

The first step is the Initialization, in which we initialize
the variables for the iterative method. In this step we need
the inverse of the scalar A, see Alg. 2, which can also be
computed using the modified Goldschmidt algorithm in Alg. 1,
initializing it with an initial guess g. In the second step, the
matrix inverse is computed again using Alg. 1. In the third
step, the last multiplication is performed for the parameter
estimation. This is summarized in Alg. 2.

Note how in Alg. 2 all the operations are HE-friendly, mean-
ing that they can be easily computed in an HE environment.

B. Analysis of Multiplicative Depth

In an HE environment, the number of levels, and thus the
number of sequential multiplications, must be predetermined.
Therefore, it is important to analyze the depth cost of our
approach.

First, note that a matrix multiplication, despite involving
multiple scalar multiplications, requires only one level, as the
scalar multiplications are performed in parallel, see Figure 2.

a) Step 1. Initialization: From Alg. 2 it can be seen that,
in this step, the number of matrix multiplications is fixed.
In this step, we need one matrix-matrix multiplication for
the computation of H”H. Then we need one matrix-vector
multiplication for H”y, one matrix-scalar multiplication to
compute \;,, A, and one matrix-matrix element-wise multi-
plication (A oI to compute the trace of the matrix A). Note
that this yields a total of 3 sequential matrix multiplications,
as the computation of A and b (4) consumes only one level
since they are computed in parallel, as shown in the example
in Figure 2 where, at level Lj, the multiplication between c;
and co, and between cs and ¢4, consume only one level.

The number of multiplications required for the inversion
of X\ varies (where A is the trace of the matrix A and g
is an initial guess for the inverse of \). This is because we
are using the modified Goldschmidt algorithm also to invert

Input: H, y, g

Output: x

Step 1. Initialization

A+ H'H

b+ HTy

A« trace(A)

Ainy ¢ GoldschmidtAlg(g, 1 — g\, ny)
ZO — )\i’rwIan

AO — Inxn - >\1',nvA

Step 2. Matrix Inversion

A < GoldschmidtAlg(Zg, Ag,n4)
Step 3. Parameter Estimation

X A”wb

return X

this scalar, and since it is an iterative method, the number
of iterations, and thus the number of multiplications, is not
constant. Nevertheless, we empirically observed that when the
magnitude of the scalar A is known, then the iterative method
can be initialized to require approximately two iterations, and
thus two multiplications, to invert the scalar. However, in the
following analysis, we will consider the worst case scenario,
and we will assume zero knowledge of A and consider the
cost of inverting A as n).

b) Step 2. Matrix Inversion: In this step, the number of
multiplications depends on the number of iterations, which
depends on the size of the matrix [6]. Notice that the matrices
Z; and A, are always on the same level. Hence, one iteration
consumes one level and this step requires a total of n4 levels.

c) Step 3. Parameter Estimation: In this step only one
multiplication is performed, so this requires only one level.

The depth cost analysis for Alg. 2 is summarized in Table 1.

TABLE I: Depth Cost Analysis for Alg. 2

Step Operation Depth
1 Matrix-Matrix/Vector Multiplications 1
Matrix-Scalar Multiplications 1
1 / A 1+ny
Trace 1
2 Matrix Inversion na
3 Matrix Multiplications 1
Total 54+ ny +na
IV. RESULTS
A. Setup

The proposed method as represented by Alg. 2 is imple-
mented using the SEAL library [16] through the Python API
provided by TenSEAL library [17] with the CKKS scheme.
The experiments were run on a system with a Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz, 754 GiB of RAM and Almal-
inux 8.10. For all the experiments, we used a total of 25 levels
with 60 bit precision for each of them.



We evaluate the proposed method on both synthetic and real
data. In particular, we focus our interest in evaluating the error
of the matrix inversion and the parameter estimation.

The error of the matrix inversion is evaluated using the
Norm Spectral Error (NSE) and the Natural Distance (dy)
[18]. The NSE and the dy are defined as

A — A7

|
NSE = x 100, (7N
[A1]2

®)

where A~! is the true inverted matrix and A~! is the
approximated inverted matrix using Alg. 1, and v, are the
eigenvalues of AA-!. For the parameter estimation, we used
the Normalized Euclidean Distance (NED) defined as

[x — x|
(BS|P
where x is the vector of target values defined in (1), and X

is the estimated value defined in (5), i.e., the values obtained
from the parameter estimation using Alg. 2.

NED = x 100, ©)

B. Synthetic data

We start by creating three random vectors v € [—1,1]%,
x € [0,1]% and r, where v and x are sampled from a uniform
distribution and r is sampled from a normal distribution with
standard deviation o = 1073, We then construct the vectors
u such that, for a given feature v;, u; = [1, Vi, V2 ,vﬂ ,
where the first element corresponds to the bias term, i.e., v? =
1, and the remaining elements are higher-order powers of the
feature v;. Thus, the matrix H is formed according to (2), so
that H consists of the polynomial expansions of the input data,
one row for each observation. We then compute y using (1).
Finally, we construct A and b using (4).

To test Alg. 2, we consider two cases. For each case we
generate 10 synthetic samples and execute Alg. 2. We compare
the results obtained in the HE environment with the results
obtained using Alg. 2 with plaintext data. We then compute the
errors using the NSE, dp, and NED defined above, followed
by averaging these errors. For these tests, we used random
vectors v with dimension dy, = 100 and n = 3 and n = 4.
The results of the first case are reported in Figure 3a, and
the results for the second case are reported in Figure 3b and
summarized in Table II. A comparison of the d for both tests
is reported in Figure 3c.

In Table II, it is shown that the error, for all three metrics,
using plaintext data and encrypted data is similar but not the
same. This difference arises from the CKKS method, which
introduces noise as a security parameter.

From these results, we can see that the method converges.
However, as shown in Figure 3, it does not always converge
to the lowest error but rather to a slightly higher one. In
particular, in some cases, it initially reaches a low error value,
but then converges toward a slightly higher one. This behavior
is attributed to the noise introduced by the CKKS method,
which grows and accumulates at each multiplication.

TABLE II: Experiment Results for the synthetic data

Metric Type n=3 n=4

NSE Encrypted 8.44e-07%  5.08e-06%
Plaintext 1.0le-12%  3.06e-12%

d Encrypted 8.68e-09 5.19e-08

N Plaintext 1.11e-14 3.72e-14
NED Encrypted  2.37e-07%  8.65e-07%
Plaintext 5.64e-13%  3.37e-12%

C. Real data

For the tests over real data, we used the Mauna Loa C' O,
dataset [19]. Specifically, we selected the subset containing the
monthly mean of C'O2 expressed in parts per million, which
consists of 301 samples. We modeled the dataset generating
the matrix H as defined in (2) with

w; = (1,2, )%, sin(wt; ), cos(wt; ), sin(2wt; ), cos(2wt; )] T,

RS R A

where the t; represents the time, ‘and t; are the terms of
the normalized vector t’ = ﬁ% that was used for
numerical stability. The angular frequency w = %r is defined
with Ty = 12, and y is the target vector that represent the
COs concentration level.

The results of the matrix inversion and the parameter esti-
mation are presented in Figure 4 and summarized in Table III.

We notice that the error of the linear regression is converging.

TABLE III: Experiment Results for the CO2 dataset

Metric Type COq
Encrypted  1.94e-06%
NSE Plaintext  3.33e-12%
d Encrypted 1.95e-08
N Plaintext 3.77e-14
Encrypted  1.19e-06%
NED Plaintext 4.42e-12%

V. CONCLUSIONS

In this work, we have defined a structured methodology
for evaluating fully Homomorphically Encrypted linear regres-
sion. The proposed method allows the evaluation of a linear
regression model where the input data remains encrypted
throughout the entire process. We then evaluated the proposed
method with both synthetic and real data. Each computational
step, including the setup phase, is performed using encrypted
operations without requiring data decryption at any stage and
without multiparty computation.

We conducted evaluations using both synthetic and real
datasets. The results from these experiments show that the
proposed approach is capable of performing linear regression
while preserving data privacy.

From the depth cost analysis and experimental outcomes, we
conclude that having more information about the dataset al-
lows for better parameter selection, leading to higher accuracy.
Specifically, we can better manage the number of operations
required for the trace and matrix inversion, as well as the use
of prior approximation for the trace.



Error over iterations Ermor

Natural Distance over iterations

over iterations

B T s e TSI

=

R ]

NED Linear regression

s

(@)

-e- dyforn=3
e duforn=s

(b) ©
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The next step is to use the trained model from this study
and use it for other datasets to further analyze the methods’
behavior, and study the optimal number of training iterations
needed to achieve high prediction accuracy on new data.
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