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Abstract—This paper presents an optimal Kalman filtering (KF)
method for distributed systems where agents have unequal state
vectors. In contrary to traditional distributed KF methods, the
prediction is done centrally at the server. The proposed method
allows for an analytically optimal linear estimator that facilitates
data transfer efficiency, privacy, and scalability, particularly in
scenarios where subsystems have large numbers of measurements.
The approach avoids the dimensionality challenges in centralized
systems by maintaining local estimates at the distributed agents
and minimizing the data transmitted to a central server. The
method is evaluated on a spatio-temporal system modeled by a
one-dimensional heat equation, subject to homogeneous Dirichlet
boundary conditions, and demonstrated to produce near-identical
results to centralized Kalman filtering. Applications of the
proposed method can be found in distributed multi-target tracking
or environmental monitoring. The method shows promise for
scenarios where measurements are sensitive or difficult to transfer,
providing an optimal and private solution for distributed systems.

Index Terms—Distributed Kalman Filter, Unequal state vectors,
Distributed estimation, Kalman Filtering

I. INTRODUCTION

In dynamic systems, the choice of estimation method is
driven by the system’s characteristics. For systems that are
linear with Gaussian noise, the centralized Kalman Filter (KF)
provides an optimal Bayesian estimate [1]. The centralized KF
assumes a centralized system that has access to all measured
data. If the data is collected in a distributed manner, this may
not be possible in a practical setting. Accessing all data can be
problematic due to privacy concerns, highlighted in Federated
Learning (FL) [2], and communication limitations [3], [4]. An
example is a vehicle target tracking scenario where the states
of a vehicle are estimated both by an external estimator and
locally by the vehicle itself. To construct a centralized KF, the
external estimator would need access to all the measurements
used in the local estimator. These measurements could consist
of a combination of RADAR, LiDAR and GPS, which may
contain a large amount of data. Additionally, there may be
privacy concerns. The vehicle might not want to share these
raw measurements with the external estimator.

An alternative to centralized estimation is Distributed Data
Fusion (DDF). In DDF, each agent estimates the system states
individually, which are then fused to obtain a more accurate
estimate than any individual estimate. DDF and its applications
are widely studied [5], [6]. In [7], the Bar-Shalom/Campo (BC)
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fuser was developed, which is an optimal way of fusing two
estimates of the same state. A limitation of the BC fuser is that
it requires knowledge of the cross-covariance between estimates,
which is rarely available in practical applications. If the cross
covariance is (wrongly) assumed to be zero, the resulting
fusion is called naive. Naive fusion typically underestimates
the covariance of the fused estimate due to double counting
data, as the two estimates usually share common information
since they are estimates of the same physical process [8],
[9]. Covariance Intersection (CI) [10] offers an alternative
to naive fusion, it provides conservative fusion irrespective
of cross covariances, meaning that it does not underestimate
the covariance of the fused estimate. Multiple alternatives
and derivatives of CI exist, such as the Federated Kalman
Filter [11], the Largest Ellipsoid method [12], and the split CI
[13]. CI and its derivatives perform well when all distributed
agents estimate the same state. However, CI cannot be directly
applied when distributed agents estimate different subspaces of
a full global state, a scenario known as distributed estimation
of unequal states. Distributed estimation of unequal states
has previously been studied in [14]-[17]. In [17], different
methods of augmenting the partial states before fusion are
investigated. In [14], [16] a fusion method for unequal states
by formulating the fusion as a Weighted Least Squares problem
is proposed, including an adaptation to CI for unequal states
if the cross covariances are unknown. Adapting CI to unequal
states guarantees conservativeness, although the fused estimate
typically becomes excessively conservative.

In this paper, we propose a novel strategy for distributed
estimation of unequal state vectors by using a global prior for
the distributed agents. This differs from the typical setup seen
in literature where priors are local to each agent. To the best of
the authors knowledge, this has not previously been considered.
The main contributions are:

1) We propose a novel distributed Kalman filter, that
maintains a common global prior prediction of the latent
states, while performing distributed measurement updates
on local reduced state subsystems.

2) We use the method to fuse the distributed estimates into
a global state using only the local state estimates and co-
variance matrices, without sharing the raw measurements,
measurement covariance or observation matrices.

This maintains the privacy of the measurements and if the
distributed agents have more measurements than states, it also



reduces the complexity of centralized computations.

II. PROBLEM FORMULATION

This paper considers the linear estimation of a global state
using local distributed estimates of its subspaces. The global
system is characterized by the discrete time process
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where A, € R¥%*der % ¢ R and w} € R are
the system matrix, the state vector, and zero mean white
Gaussian process noise with covariance matrix Q7 at time
n, respectively. The superscript =* denotes the global state
vector. Each distributed subsystem state is given by
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where z!, € R%t, denotes the Ith local state and M! ¢

n

Rt >4 i3 a mapping from the global state to the subsystem.
Each agent measures an arbitrary subset of the local states
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where y!, € R%! is the measurement, H!, € R% %%l s the
observation matrix, and vfl € R%" is zero mean white Gaussian
measurement noise with covariance matrix R!, € R% X%t Tt
is assumed that there is no relation between measurements in
different subsystems, which means that local subsystems only
measure their own states and Cov(v?,vl) =0, V i # j.

Assuming that all measurement data with corresponding
covariance matrix

l _ U1 l
yn_Hnwn+Un

Yn R, - 0
Y 0 Ry
and global observation matrix H € Ry %ds= are available at
a centralized server, the optimal estimate of the global system
(1), is given by the centralized KF given by [18]

1. Prediction:

D1 = Andy_qn_y (4a)
nin—1=Aa Py, AT +Qp (4b)
2. Measurement update:
2 = Yp — Hy 2500 (5a)
S, =H, P, H;T+ R}, (5b)
K, =P, HT (s;)" (50)
Thyy = Tnp1 T K 2 (5d)
nin = T KL HL) Po (5e)

where Z7 - indicates the estimate of z;, based on all measure-
ments up to and including time n. The global Kalman filter
will provide an optimal estimate, but there are practical and
privacy concerning challenges regarding the measurements of
the subsystems. Transferring the raw data may require using
a lot of bandwidth, and the distributed agents may not want
to share their data with other agents or the centralized server.
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Fig. 1. The considered setup with L = 4 distributed agents. Each distributed
agent estimates a subspace of the global state, using the marginalization
(i‘iz\nfl’Pln\nfl) given by (7). The server fuses the local estimates and
predicts the next state using the system dynamics. The communication,
prediction, updates and fusion occurs during each time step.

Hence, we consider the case where each agent performs a local
measurement update

K, =P, HTHP,,_HT+R,)™" (6a)
jiz\n = i‘iﬂnfl + Kil(yit - Hljiz\nfl) (6b)
Pﬁwn = (I- KﬁLHl)Pﬁl‘n_h (6¢)

based on common prior information obtained from the global
system, which is maintained by a central server. The central
server performs the global prediction (4), and transfers the
(potentially) reduced prior state and covariance estimates to
each respective agent according to

i‘ln|n—1 = MiL f;kz\n—l (73)
Pl =M, Py, (M. (7b)

The updated reduced-state estimates and covariances are then
transferred back to the centralized server to perform a global
update without needing the local measurements, measurement
covariances or observation matrices. An overview of the setup
is illustrated in Fig. 1.

III. GLOBAL UPDATE FROM LOCAL ESTIMATE
A. Equivalent measurements and covariances

In the standard KF measurement update (5), each measure-
ment in y; updates all states in the global system proportional
to the predicted cross covariance with the measured state. If
the global system (1) is expanded such that additional states
are introduced, and the cross covariance between the newly
introduced states and the rest of the state vector is known, the
only part of (5¢) that changes is the matrix product P2|n71H:zT-
The only change that needs to be made to include the newly
added states in the update, is adding the new states into P:ﬂnfl
to form the augmented covariance matrix P"Y | as well as
adding a zero column to H, corresponding to each added state,
forming the augmented observation matrix H"9.

By utilizing the fact that the global state in (4) has a common
prior distribution and that the locally calculated estimates are
available, it is possible to augment all distributed subspace
estimates to obtain L global estimates if the structure of the
observation matrices H!, is known. This is in fact still possible



to do without knowing H!, and thus, without compromising
the integrity of the distributed agents.

Consider the local measurement update of the /th agent,
which consists of d,: states, with d,; observations that span
a subspace D!, where dim(D') = )\l < d,. Using (5e), it is
possible to calculate

K'lrLHl = (P n|n)(Pn\n 1)71 ®)
and determine the rank of the matrix product K!,H',, which
is Al. Next, let there exist a matrix product

nln—1 "

-l 1yl
K H =K H,, )
where the factors K!, and H', are initially unknown. Now,
. 3 i .
assign H!, € R ¥4t o be a matrix such that
Ve RS VNG = A
K. = (K,H,)(H,), (10)
extracts the linearly independent columns of K! H!, where
t denotes the pseudo-inverse. In the case that Kl Hl is full
rank, the matrix H, will simply be the identity matrix, even
if dy > di. If KL HY is rank deficient, the rows of HY, are
given by the right singular vectors, of K!, H!, corresponding
to the non-zero singular values.
Given that the structure of I_(ﬁ1 is known from (5b) and
(5¢), it is possible to calculate a transformed, but equivalent,
measurement covariance R/,, and measurement ¢!, as

RL = ((ﬁg)upg,n_lylm)* —H,P,,HT (1)
(Kl ) ( n|n (Kl I)mn\n 1) (11b)
This leads to the transformed KF update
Aol ol
Zn = Yn n ‘L.n|n71 (]23')
S, = H, Py, H] + R, (12b)
Kz, =P, HI(S]) 'z, (120)
=K, 7, (12d)

which is equivalent to the update in (5d) if the reduced prior
is replaced with the global and the observation matrices are
augmented. This means that the computed ¢!, and R}, are
linear transformations of the original 3!, and R!. This can
easily be seen if \! = dy, = dgi: In this case

H, = (H,) 'H}, =1 (13a)
= (H;,) 'y, (13b)

T
L= (1) 'R (L)) (130)

Since the measurements of the distributed agents are assumed to
be independent of each other, the result in (12) can be expanded
to include all distributed agents and obtain an equivalent full
state KF update.

B. Proposed full state update

By augmenting the observation matrices with zeros for
the non-common states between the distributed agents and
the global system, and using the common prior Pn|n 1> We

i P, for l=1,..., L.

n\n’

can obtain L global estimates (&
(leln, P ln) is an estimate of the global state vector from the
[th agent’s local estimate, a projection from the subspace to
the global state vector. All L projections could now be fused
using state of the art methods such as CI [10].

However, we instead propose an optimal KF update using

the calculated ¢!, and R! . Consider
7 RL - 0 B oo
Ry=1 0 D HL= 0,

mn n
nRL ryL, aug
Ry H,

Up= 1"
U 0

which are the equivalent measurement vector, noise covariance,
and the joint estimated observation matrix, respectively. These
can be used for the equivalent global KF update

-1

K:; = P:L\nfl I:I:L T (H Pn\n 1 H:L T+ R:z) , (14a)
Enpn = Enpr + K (70— HL 0 ) (14b)
o= (I-KGH) P (140)

The proposed method is summarized in Algorithm 1.

Algorithm 1 Fusion of distributed unequal state vectors

1: Kalman prediction with the global state vector and covari-

ance matrix (4).

2. forl=1,2,...,L do
3 Extract and transfer the local state predictions (7).
4 Perform local update (6) and transfer to the server.
5: end for
6
7
8
9

:forl=1,2,...,L do
Recelve local update & nin and P!
Determine Hf, from (9).
: Compute 7, R, from (11).
10: end for
11: Construct g, R and H.
12: Perform measurement update (14) to obtain Z7,

nln®

and P .

C. Proof of equivalence in a special case

Consider the regular KF update with access to the exact
measurements ¥, , measurement covariance R, and observation
matrices

H;, = (15)
Hﬁ” aug

from the distributed agents. Furthermore, assume that the total
number of observations equals the number of total states
such that K;H> is full rank, and thus, H} is square. By



transforming y;, R} and H} with an arbitrary non-singular
weight matrix W according to (13), we can see that

-1
Pl HLWT(W(SH)WT) W
=P, HyWT ((WT)‘1 (S,’;)”W—l)w 2t

* )1 * ok
nln—1 H;I;,(Sn) (yn - H, ‘rn|nfl)’
which shows that the transformed KF update is equivalent to
the regular KF update (5).
IV. RESULTS

We evaluated the proposed method on two examples and
compare it with the centralized KF using the RMS relative
error (RMSRE) [19]

1 s 18 — 2P

. nin nmn

RMSRE(i) = | 1= D A (16)
n=1 nin

A. Toy example

In order to demonstrate the feasibility of the proposed
method, we show a toy example for one time step. Consider
the global system

1 |:82800 N 1 [8100
8757 0 1810

Tn = 0 7686 | Tn-1FTWn,Wn ~ 0, 0171 )
100 [ 6 0 6 61 100 [oo016

that contains 4 states, and is divided up into 2 subsystems, A
and B, each containing 2 substates of the global states.

A centralized server runs a Kalman prediction of the global
state (4), and transfers marginalizations of the global state (7)
to A and B. Two cases are considered for this example:

Case 1: Subsystems A and B each measure their respective
states using a total of 3 observations each, with their respective
observations matrices

1 03 2 1
HA = [2 2},HB: [1 3}.
03 1 0.3 0.5

For comparison, a centralized KF is used to estimate the
system, using the global observation matrix

H — {HA 0 } c RO

PR a7)

Case 2: Subsystems A and B each measure their respective
states using a total of 1 observation each, with their respective
observations matrices

HA=[1 03] ,HE=]2 1].

For comparison, a centralized KF is used to estimate the
system, using the global observation matrix
. _[HA 0 2x4

Hf[o HB}GR . (18)

Table I presents the RMSRE (16) between the centralized
KF and the method described in Algorithm 1, for both test
cases. The results highlight the advantages of the proposed
method in terms of privacy. Neither the true measurement, nor
the measurement covariance, nor the number of measurements

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

system | T T

25 50 75 100

Fig. 2. The setup considered for all test cases (a), (b), and (c). The
global system consist of 100 states, and each subsystem consists of 25 non-
overlapping states.

are revealed at the server. Case 1 also highlights the benefits
in terms of communication and server side computation. If the
number of measurements increase, the calculated observation
matrix H* will still be a Iy 4.

B. The one dimensional heat equation

In the second example, we consider a one dimensional
heat equation subject to homogeneous Dirichlet boundary
conditions,

ou  *u

ot 0x2
where w(z,t) is a white noise process with spectral density
o2. The system (19) is spatially discretized into 100 equally
spaced sections, one meter apart, using the finite difference
method, and temporally discretized [20] to yield the global
system described in (1). An overview is shown in Fig. 2.

Three test cases are considered. In all cases, the system is
divided up into four equally sized subsystems, each containing
25 states with no overlap. The process noise is Independent
and Identically Distributed (IID) White Gaussian Noise (WGN)
with 02 = 2. The sampling time is At = 0.1s and the
measurements are subject to IID WGN with 2, = 1. Each
case is performed for I = 500 Monte Carlo (MC) runs, with
N = 100 iterations in each run. At the end of each MC run,
the proposed method is compared to a fully centralized KF
using the RMSRE (16). The specific test cases are:

a) Each subsystem contains 25 local states and measures 15
of the local states, with a total of dyl = 15 observations.
During each MC run, a new subset of 15 states is selected
and the observation matrices H' are randomized for these
specific states. The observation matrices remain constant
during each iteration of the same MC run.

b) Each subsystem contains 25 local states and measures
all local states, with a total of d,; = 15 observations.
During each MC run, the observation matrices H! are
randomized. The observation matrices remain constant
during each iteration of the same MC run.

¢) Each subsystem contains 25 local states and measures
all 25 local states, with a total of dyz = 35 observations.
During each MC run, the observation matrices H! are
randomized. The observation matrices remain constant
during each iteration of the same MC run.

+ w(z, ), 19)

For the one dimensional heat equation we compare the proposed
method against a centralized KF by evaluating the RMSRE (16)
in all three test cases. As the proposed method is analytically
equivalent to the centralized KF, this is the only comparison
of interest. The means and variances of the RMSRE are



TABLE 1
ToYy EXAMPLE RESULTS FOR BOTH TEST CASES

Case H* H* y 7 R R RMSRE

10 03 0 0 ~0.10

20 20 0 0 10 0 0 0.06 | [—0.56 054 —048 0 0

03 10 0 0 01 0 0 076 | | 0.67 —0.48 0.54 0 0 e
1 0 0 20 1.0 00 1 0 —0.72| |—0.20] O-Blexs | ¢ 0 020 —0.10| 437> 10

0 0 10 30 00 0 1 —0.83| |-0.21 0 0 -010 0.10

0 0 03 05 ~0.90

10 03 0 0] [-09 -029 0 0 1 [-010] [o0.10 046 0 16
2 0 0 20 10} [ 0 0 —0.89 —0.45} {—0.72} {0.33} 0.5I2x2 { 0 0.10] 1.52 x 10

summarized in Table II. The difference of the methods are on
the order of magnitude of machine precision.

TABLE II
PERFORMANCE METRICS OF DIFFERENT TEST CASES

Case Mean Variance

(a) 1.24 x 10~ 6.89 x 1030
(b) 6.40 x 10~1%  1.28 x 10730
(c) 477 x 10715 314 x 10~31

V. CONCLUSIONS

The proposed method demonstrates near identical results to
the centralized KF in simulations, with the main differences
being in the order of magnitude of machine precision. The
proposed method allows for an analytically optimal linear
estimator for distributed systems of unequal states, which
has advantages over the centralized KF in terms of data
transfer, privacy and computational time, particularly when
the subsystems have a large number of measurements. Even if
the number of measurements far exceeds the number of states
at the local agent, the calculations done at the central server
assume that the number of measurements equals the number of
states. This can significantly reduce the dimensionality of the
matrix inversions at the centralized server. In addition to this,
since only the state estimates and covariance matrices are sent
back to the centralized server, the integrity of the distributed
agents is not compromised.

These results can be particularly useful in environmental
monitoring, as demonstrated in this paper, or distributed target
tracking scenarios. For example on an accident-prone stretch
of road, where a central server could be placed to estimate all
states of the vehicles on this stretch. Modern vehicles have
access to a lot of measurements and data, some of which may be
private or unfeasible to transfer. In this scenario, the proposed
method could provide the server with an efficient optimal
estimate of the system, while still preserving the privacy.
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