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Analysis of the Adaptive Threshold Vehicle
Detection Algorithm Applied to Traffic

Vibrations ?
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∗ Lule̊a University of Technology, Division of Systems and Interaction,
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Abstract: This paper discusses and analyzes the performance of the Adaptive Threshold
Detection Algorithm for vehicle detection based on road traffic vibrations. The algorithm,
originally developed for magnetometer- and microphone-based vehicle detection, is adapted
for the usage with seismic signals and then analyzed in a statistical framework. It is found
that the algorithm can be applied to this kind of signals and promising results are obtained in
simulations and tests on measurement data. Further testing using real traffic data is required
in order to obtain more significant results.
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1. INTRODUCTION

Due to the advances in electronics and sensor systems,
many novel traffic detectors have been developed in recent
years. Besides high-end solutions, for example video or
radar which are used scarcely, low cost sensors such as
microphones or magnetometers are widely considered as
a replacement for the somewhat outdated detectors such
as inductive loops or pressure tubes that are currently
used (Sullivan et al., 2005; Honeywell, 2005). Furthermore,
small low cost sensors can be used much more widely
which will enable novel applications in infrastructure-to-
infrastructure or vehicle-to-infrastructure scenarios in the
future (see, e.g. Birk et al. (2009)).

Magnetometers were first perceived as a direct replace-
ment for inductive loops. Both are based on similar phe-
nomena and provide similar information. Vehicle detec-
tion has been investigated by Cheung and Varaiya (2007)
who proposed the Adaptive Threshold Detection Algo-
rithm (ATDA) for different sensing sources such as mag-
netometers or microphones. The ATDA is a simplistic,
yet presumably reliable detection algorithm as it has been
shown experimentally by Ding et al. (2004). Commercial
vehicle detector products based on magnetometers are
available and in use nowadays (SENSYS Networks, 2010).
Recent research has taken magnetometer-based sensing
even further and, for example, vehicle velocity can be
estimated and vehicles can even be tracked using mag-
netometers (Isaksson, 2008; Wahlström et al., 2010).

Another approach was introduced by Hostettler et al.
(2010) where the seismic signal on the road surface is
measured in order to estimate vehicle parameters. This
is more seen as an approach comparable to pressure tubes
since the measured signal is caused by the vehicle-ground
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interaction and it is expected that additional vehicle-
related parameters such as axle load can be estimated
using this method. In any of the schemes there arises the el-
ementary question of what performance a vehicle detector
can achieve. Therefore, it is the objective of this paper to
analyze the performance of the above mentioned Adaptive
Threshold Detection Algorithm using the seismic signals
measured by an accelerometer instead of a magnetometer
or microphone as an input. Since the algorithm has only
been verified experimentally, we will first analyze it in
terms of a statistical framework and assess the theoreti-
cal performance. The algorithm is then applied to traffic
vibrations in order to verify the previous results.

The organization of the paper is as follows. First, the signal
model for seismic signals is presented in Section 2. Then,
the algorithm is introduced and described in Section 3.
In Section 4, the statistical properties, timing constraints
and parameters are discussed. The analysis is followed by
a simulation using the introduced signal- and disturbance
models as well as using real traffic vibration data in Sec-
tion 5. Concluding remarks are given in Section 6.

2. SIGNAL MODEL

Unlike other phenomena such as magnetics, road traffic vi-
brations and propagation have not been understood to the
same degree. Different approaches such as using random
characterization or tire-pavement interaction modelling
have been studied (Hunt, 1991; Sun and Kennedy, 2002;
Hao and Ang, 1998). Nevertheless, based on previous ob-
servations (Hostettler et al., 2010) we identify the following
two hypotheses

H0 : x(0)[n] = e[n] (1)

H1 : x(1)[n] = s[n] + e[n] (2)
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Fig. 1. Traffic vibration pre-processing: The measured seis-
mic signal is first band-limited and then the signal en-
velope is estimated using a square-law device followed
by a low-pass filter.

where the bracketed superscript denotes the respective
hypothesis (H0 or H1).

In the first case, denotedH0, only sensor noise is measured,
i.e. no vehicle passes. It is assumed that e[n] ∼ N

(
0, σ2

)
is additive white Gaussian noise. For H1, the signal in-
cludes not only noise but also a band-limited vibration
component s[n] and additive noise e[n] as described before.
s[n] is approximated by an exponentially pulsed harmonic
vibration

s[n] = Ap[n] cos(ω0n) = Ae−(ωbn)
2

cos(ω0n) (3)

where ωb is the pulse bandwidth and ω0 the center fre-
quency (normalized frequencies in radians/sample). We
note that s[n] denotes the vibrations caused by one axle.
This implies that a vehicle with multiple axles causes a
superposition of multiple pulses s[n].

3. ALGORITHM DESCRIPTION

The detection scheme proposed by Cheung and Varaiya
(2007) foresees a two-stage processing of the source signal
where the signal first is pre-processed and then used in
the name-giving ATD algorithm. Clearly, it is the first of
these two stages which depends on the source signal used
whereas the second stage remains the same.

3.1 Pre-processing

The pre-processing applied to the vibration signal is a
chain consisting of a pre-filter, squarer and post-filter as
depicted in Fig. 1.

The pre-filter G1 is a band-pass filter that limits the signal
to the desired range. The corner frequencies for G1 are ωl

and ωu and they enclose the seismic signal caused by a
vehicle as described in Section 2. The post-filter G2 is
a low-pass filter with cut-off frequency ωc that regains
the envelope pulse p[n]. Analysis of the pre-processing
stage is done assuming ideal filters. Practical tests showed
that elliptical filters with corner frequencies ωl = 0.5π,
ωu = 0.77π and order NG1

= 12 for the pre-filter G1 and
cut-off frequency ωc = 0.009π and order NG2

= 7 for the
post-filter G2 satisfy this assumption. The filter frequency
responses are therefore given by

G1(ω) = rect

(
ω

2ωu

)
− rect

(
ω

2ωl

)
(4)

G2(ω) = rect

(
ω

2ωc

)
(5)

where

Table 1. Adaptive Threshold Detection Algo-
rithm (ATDA) detector summary.

1. If v[n] = 0 and
∑Ns−1

k=0
d[n− k] = 0

b[n] = (1 − α)b[n− 1] + αy[n]
else
b[n] = b[n− 1]

2. z[n] = y[n] − b[n]
3. If z[n] ≥ T

v[n] = 1
else
v[n] = 0

4. B1[n] =
∑N1−1

k=0
v[n− k]

B2[n] =
∑N0−1

k=0
v[n− k]

5. If B1[n] = N1 and d[n− 1] = 0
d[n] = 1

else if B2[n] = 0 and d[n− 1] = 1
d[n] = 0

else
d[n] = d[n− 1]

rect (x) =

{
1 |x| ≤ 1/2

0 otherwise
.

It should also be noted that this pre-processing can be
seen as an envelope demodulator. The resulting signal is
the input to the detector described next.

3.2 Detection

The actual detector is summarized in Table 1. First, a
so called adaptive base-line compensation is performed.
This is in effect a high-pass filter that removes possible
offsets from the pre-processed signal. In the case of mag-
netometers, it is known that the offset is temperature
dependent (Cheung and Varaiya, 2007). The base-line
compensation’s effect on the vibration signal is analyzed
in Section 4.2. The output z[n] is the difference between
the base-line b[n] and the input y[n]:

z[n] = y[n]− b[n] (6)

where

b[n] =

(1− α)b[n− 1] + αy[n] v[n] +

Ns−1∑
k=0

d[n− k] = 0

b[n− 1] otherwise

.

(7)

α determines the convergence rate, v[n] is the thresholded
signal z[n] as given by (8), and d[n] is the detection flag
(see below). From (7) we note that the base-line is only
adapted when H0 is measured.

z[n] is then compared to a predefined threshold T yielding

v[n] =

{
1 z[n] ≥ T
0 z[n] < T

(8)

Then, it is evaluated for how long v[n] remains stable. The
two counters B1[n] and B2[n] calculate the sum of the last
N1 and N0 samples of v[n].
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Fig. 2. Probability density functions fy(x) for the two
hypotheses H0 and H1 (top) and trade-off curves for
the probabilities of false positives and false negatives
(bottom). The circle marks the chosen value at T +
b[n] = 2 · 10−5.

B1[n] =

N1−1∑
k=0

v[n− k] (9)

B2[n] =

N0−1∑
k=0

v[n− k] (10)

From these counters the final decision whether a vehicle
has passed or not is taken as follows:

(1) If B1[n] = N1 and d[n − 1] = 0 a new vehicle is
detected and hence d[n] = 1.

(2) If B2[n] = 0 and d[n − 1] = 1 the vehicle has passed
the sensor completely and hence d[n] = 0.

(3) In any other case, the previous state is retained, i.e.
d[n] = d[n− 1].

A vehicle is detected whenever d[n] = 1.

4. ANALYSIS

4.1 Preprocessing

The signal properties for y[n] based on the hypotheses
given in (1) and (2) are derived in Appendix A. Here only
the main results are used for further analysis.

Typical values for high sensitivity accelerometers are σ2 =
5 · 10−6(m/s2)2 and experiments have shown that a car
passing at a distance of d = 1m has a minimal amplitude
of A = 0.01m/s2. Using these values, Fig. 2 shows the Γ-
distributions for the two cases. It is obvious that excellent
detection results can be obtained with such a sensor since
the distributions are well separated due to the high signal
to noise ratio.

4.2 Adaptive Base-Line

As described in Section 3 the adaptive base-line is calcu-
lated depending on the NS past states (see Eq. (7)). This
implies that if T is exceeded by z[n], b[n] is not adapted

and the previous value is retained. That in turn means that
the base-line is adapted if and only if H0 is measured. The
expected value of b[n] is therefore given by

E {b[n]} = E
{

(1− α)b[n− 1] + αy(0)[n]
}

= η(0)y , (11)

i.e. it converges to the (pre-processed) noise mean. Thus,
for the signal given, the base-line compensation shifts the

pre-processed signal by η
(0)
y . This is in agreement with the

offset-removing function as identified in Section 3.2.

4.3 Threshold

Depending on the application, different design goals are of
importance when determining a detection threshold, e.g.
the cost for a false positive might be much higher than
the cost for a false negative and therefore the threshold
is chosen in order to minimize the false positives. In
the present application, no cost is assigned to neither
of the false detections. Therefore, a threshold for equal
probabilities of miss (PM ) and false alarm (PFA) is desired.
PFA is given as

PFA = P (z[n] ≥ T |H0) = 1−P (y[n] < T +b[n]|H0) (12)

and PM as

PM = P (z[n] < T |H1) = P (y[n] < T + b[n]|H1). (13)

Fig. 2 shows the curves for PFA = 1 − P (T + b[n]|H0)
and PM = P (T + b[n]|H1). The intersection of the two
curves is the sought value as described above. As expected
from Section 4.1, the strong signal to noise ratio makes
it possible to choose a point where PM and PFA reach
virtually zero. It is noted that the separation of the error
rate curves shown in Fig. 2 becomes less for sensors with
worse noise figures, e.g. for cheaper integrated sensors,
which in turn leads to worse performance characteristics.

4.4 Timing Considerations and Constraints

The parameters N1 and N0 affect the algorithms respon-
siveness to detection and recovery. N1 essentially defines
the time the sensor has to be occupied by a target for
the algorithm to detect it as a target. This has the effect
that short disturbances of length < N1 are rejected and
the threshold has to be exceeded by the vehicle for at
least N1 samples. If N1 is chosen too large, the rate of
false negatives is increased but at the same time stronger
disturbances can be rejected. N1 also introduces a delay
between the time when the vehicles actually arrives at
the sensor and the time it is detected. In the U.S. this
delay is required to not exceed 100ms (Federal Highway
Administration, 2006, pp. J-1ff.).

The time N0 on the other hand is a means to reject
negative disturbances. If due to some reason the input
signal falls below the threshold for a short time that is
smaller than N0, it is assumed that this is a disturbance.
Only if the signal drops below the threshold permanently
(i.e. for a time longer than N0), new vehicles can be
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Fig. 3. Example of a simulated signal. The modelled signal
according to Section 2 (top) and the pre-processed
signal together with the detection window (bottom).

Table 2. Algorithm parameters used for simu-
lation and logged data.

Parameter Value

α 1 · 10−6

T 1.86 · 10−5

N1 440 (, 0.1s)

N0 2200 (, 0.5s)

Table 3. Algorithm results for the simulation
and real data.

Simulation Sensor 1 Sensor 2

No. of Vehicles 1000 142 142
Detected 1000 142 142
Missed 0 0 0
False Alarm 0 0 1

detected. This has as a side effect that vehicles following
each other very tightly might be counted as one, yielding
a false negative error. The choice of N0 can therefore
be linked to driver behavior and performance such as a
driver’s choice of the distance to the next vehicle and driver
reaction times (Triggs and Harris, 1982).

5. RESULTS AND DISCUSSION

5.1 Simulation

Different cases are simulated here in order to illustrate the
algorithm performance as analyzed. First, the ideal case is
considered where vehicles follow each other with an inter-
vehicle distance of more than 1s. Fig. 3 shows this kind of
signal as described in Section 2. Nsim = 1000 samples of
this type with signal and noise characteristics as described
before and algorithm parameters as shown in Table 2 were
simulated. This yielded no errors as expected and the
results are listed in Table 3.

Another simulation was run to verify the timing con-
straints regarding N0 in order to verify miss in cases where
two vehicles are following very closely. Table 4 shows the
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Fig. 4. Traffic vibrations for a passenger car. The measured
vibration signal on top and the pre-processed signal
together with the detection below.

Table 4. Results for the simulation where two
cars follow each other very tightly for different

values of ∆t.

∆t 0.25s 0.5s 1s

No. of Simulations 1000 1000 1000
No. of Vehicles 2000 2000 2000
Detected 1000 1000 2000
Missed 1000 1000 0
False Alarm 0 0 0

results for simulations with an inter-vehicle spacing of
∆t = 0.25s, ∆t = 0.5s, and ∆t = 1s with Nsim = 1000
simulations per value of ∆t.

5.2 Traffic Vibration Data

The algorithm was also applied to road vibrations mea-
sured as described by Hostettler et al. (2010). In these
experiments, 142 vehicle signatures were measured with
two spatially separated accelerometers. The signatures in-
clude a broad variety of vehicles: passenger cars, passenger
cars with trailers, delivery trucks, trucks and trucks with
trailers. Fig. 4 shows a typical signal for a passenger car
together with the envelope and the window where a vehicle
occupies the sensor.

The results from applying the algorithm to this data are
also given in Table 3. As expected, all the vehicles are
detected for both sensors. However, for sensor 2, there
is one false alarm that was triggered. Analysis of that
specific case showed that this is due to a strong pulse-like
disturbance that was not rejected.

5.3 Discussion

The simulations as well as the results from applying the
algorithm confirms the analysis developed in Section 4 and
the detection performance was very good.

However, a weakness in the disturbance rejection of the
algorithm was revealed. A false detection was triggered due
to a strong pulse of unknown origin. It can be assumed that



such disturbances are quite common in seismic signals, e.g.
due to nearby construction work or percussive drilling. The
algorithm could not resolve that problem which indicates
that future work has to address this kind of problem more
thoroughly.

Some more thought is now given to the choice of the
parameters. Except for the detection threshold, these were
chosen manually, based on assumptions made on how
drivers behave and on limits specified by authorities.
Another more robust option to determine the parameters
is, for example, the use of Monte Carlo simulations where
parameters are chosen based on a predefined optimality
criterion (see, e.g. Andrieu et al. (2003)). This certainly
yields a more reliable choice of parameters and should be
considered for further development.

6. CONCLUSION

In this paper, the Adaptive Threshold Detection Algo-
rithm as proposed by Cheung and Varaiya (2007) has been
described and analyzed in detail. It has been shown that
the algorithm, originally intended for vehicle detection
using magnetometers and microphones, can be applied to
road vibrations measured by accelerometers.

The algorithm’s performance has been analyzed in terms
of signal statistics and it was shown that very good
signal and noise separation can be achieved which yields
high detection rates. Data from simulations and real-life
experiments were tested on the algorithm and confirmed
the theoretical analysis.

Despite the good results, some additional remarks should
be made. First, the assumed signal model is appropriate
for this analysis, does, however, not reflect the complex
physics involved in traffic vibrations and might prove
wrong for other applications. Finally, the number of sam-
ples (142) of real traffic data is very low and the algorithm
performance should be correctly assessed on a much larger
and more varied dataset in order to make more precise
quantitative statements.
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Appendix A. DERIVATIONS

A.1 Signal Characteristics for Hypothesis H0

Signal The input signal for when H0 is present is given
in (1). This yields the output signal

y(0)[n] = g2 ∗ (g1[n] ∗ e[n])2 (A.1)

where ∗ denotes the convolution. Based on that, the
output mean and variance can be determined in order to
characterize the output statistics.

Output Mean Since the input is a zero mean Gaussian
random process with static non-linearity, the output mean
is given by



η(0)y = E
{
y(0)[n]

}
= E

{
g2[n] ∗ (g1[n] ∗ e[n])2

}
= g2[n] ∗ E

{
(g1[n] ∗ e[n])2

}
= G2(0)E

{
(g1[n] ∗ e[n])2

}
.

The mean output E
{

(g1[n] ∗ e[n])2
}

of the squarer is
equal to the variance of the pre-filtered input. Given the
assumption of ideal filters, this is

E
{

(g1[n] ∗ e[n])2
}

=
σ2

π
(ωu − ωl).

And therefore, the output mean becomes

η(0)y =
σ2

π
(ωu − ωl). (A.2)

Output Variance The output variance is calculated using
the output autocorrelation. The input autocorrelation is

given as R
(0)
xx [k] = Ree[k] = σ2δ[k] which has the power

spectral density S
(0)
xx (ω) = σ2. Applying the pre-processing

as described in Section 3.1 yields the output power spectral
density

S(0)
yy (ω) =η(0)y

2
δ(ω) +

σ4

π

(
2(ωu − ωl − ωc) rect

(
ω

2ωc

)
−2|ω|+ |ω + ωc|+ |ω − ωc|

)
.

(A.3)

Taking the inverse Fourier transform yields

R(0)
yy [k] =η(0)y

2
+

2σ4

π2

(
ωc(ωu − ωl − ωc) sinc

(ωc

π
k
)

+2
(ωc

2
sinc

(ωc

2π
k
))2)

(A.4)

for the output autocorrelation function. The output vari-
ance is now calculated by

σ(0)
y

2
= R(0)

yy [0]− η(0)y

2
(A.5)

and the output distribution is approximated as a Γ(α, β)
distribution since it is a (weighted) sum of squared Gaus-
sian random variables. The parameters α and β are

α =
η
(0)
y

2

σ
(0)
y

2 , β =
σ
(0)
y

2

η
(0)
y

. (A.6)

Note that the output is wide sense stationary since η
(0)
y is

constant and R
(0)
yy [k] is a function of the time difference k.

A.2 Signal Characteristics for Hypothesis H1

Signal For H1, the input signal is a superposition of
signal and noise as described in (2). This input signal yields
the output

y(1)[n] =g2[n] ∗ ((g1[n] ∗ s[n])2

+ 2(g1[n] ∗ s[n])(g1[n] ∗ e[n])

+ (g1[n] ∗ e[n])2).

Since s[n] is bandlimited within (ωl, ωu), the filtering
g1[n]∗s[n] = s[n]. Furthermore, the output of the squared,

post-filtered signal is g2[n]∗s2[n] = A2

2 p
2[n] since ωb < ωc.

This yields

y(1)[n] =
A2

2
p2[n] + 2g2[n] ∗ (s[n](g1[n] ∗ e[n])

+ (g1[n] ∗ e[n])2.

(A.7)

We note that the output consists of the (desired), filtered
signal as well as the filtered noise component as shown ear-
lier. Additionally, a new noise-like component is generated
(by the squarer) which is a cross product of the signal and
the input noise.

Output Mean The output mean is the expected value of
the output signal shown in (A.7). It can be easily shown
that the middle term has an expected value of 0. The
output mean therefore becomes the sum of the filtered

signal and the output mean η
(0)
y of the noise-only case

η(1)y [n] =
A2

2
p2[n] + η(0)y =

A2

2
p2[n] +

σ2

π
(ωu−ωl). (A.8)

Output Variance The output variance is calculated by
using the second order moment and the mean (Papoulis,
1984, pp. 108):

σ(1)
y

2
[n] = E

{
y(1)

2
[n]
}
− E

{
y(1)[n]

}2

(A.9)

Using (A.7) in (A.9) and simplifying it, it can be shown
that

σ(1)
y

2
[n] = E

{
(2g2[n] ∗ (s[n](g1[n] ∗ e[n]))2

}
+ σ(0)

y

2
,

i.e. the sum of the output variance of the mixed term
and the output variance of the noise. The latter is given
in (A.5). For the first part, it can be shown that

E
{

(g2[n] ∗ (s[n](g1[n] ∗ e[n]))2
}

= 2A2p2[n]
σ2

π2
ωc(ωu−ωl)

and the variance becomes

σ(1)
y

2
[n] = 8A2p2[n]

σ2

π2
ωc(ωu − ωl) + σ(0)

y

2
. (A.10)



Note that the output mean as well as the variance vary
with time and the output is no longer wide sense station-
ary. Again, the output is approximated by a Γ-distribution

with parameters as described by (A.6) but using σ
(1)
y

2
and

η
(1)
y instead.


