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Abstract—The main contribution of this paper is a comparison
of different machine learning algorithms for vehicle classification
according to the “Nordic system for intelligent classification of
vehicles” standard using measurements of road surface vibra-
tions and magnetic field disturbances caused by vehicles. The
considered algorithms are logistic regression, neural networks,
and support vector machines. They were evaluated on a large
dataset consisting of 3074 samples. Hence, a good estimate of the
actual classification rate was obtained. The results show that for
the considered classification problem the logistic regression is the
best choice with the overall classification rate of 93.4%.

I. INTRODUCTION

Vehicle classification is an important task in traffic monitor-
ing and analysis. Rich information about the traffic composi-
tion provided by a classification analysis is commonly used for
different purposes such as urban planning, road maintenance,
traffic light scheduling, etc. For a long time, this kind of in-
formation has been obtained based on inductive loop detectors
for permanent installations or pressure tubes for temporary
installations [2], [3]. During the last decade, with the advance
of cheaply available sensors, wireless communication, and
electronics hardware, sensor networks have started to replace
those traditional systems [4], [5]. Some advantages of these
novel approaches include the possibility of on-demand or real-
time access to the data due to their connectivity, and less wear
due to the possibility of non-invasive installations.

Therefore, the Nordic Research and Development coopera-
tion (NordFoU) has started to formulate the “Nordic system
for intelligent classification of vehicles” (NorSIKT) standard,
a new vehicle classification standard. The purpose of the
standard is to “establish a Nordic standard for classification of
vehicles and thereby to be able to exchange and compare traffic
data between the different countries” [6]. This development
also requires adaption of the existing as well as the devel-
opment of new classification methods to fit both the newly
available sensor hardware and classification standards.

Traffic monitoring using wireless sensor nodes as a such is
a rather mature field. In [5], it was shown that magnetometers
can be used to count traffic, to estimate vehicles’ speed, and
even to classify vehicles. Furthermore, in [7] it was shown
how to use a road-surface mounted micro accelerometer and a
neural networks-based algorithm to distinguish between diesel,
gasoline, and heavy diesel engine vehicles using the vehicle’s
frequency spectrum as a feature. The works in [8], [9]

also used accelerometer-based vehicle detection. The authors
developed a peak detection algorithm to detect individual
vehicle axles followed by a table lookup. Finally, a setup using
vibration measurements from under the roadway combined
with a neural network classifier for perimeter surveillance was
introduced in [10].

The main contribution of this paper is a comparison of
three different machine learning algorithms (linear regression,
neural networks, and support vector machines) for vehicle
classification according to the NorSIKT classification standard.
The sensors used are an accelerometer and a magnetometer,
both mounted in a single sensor node on the road side. The
algorithms are evaluated on a large dataset, consisting of 3074
samples, hence, a good estimate of the actual classification rate
is obtained. The data sets were aggregated during evaluation
trials which were conducted by the Swedish Traffic Adminis-
tration.

The remainder of this article is structured as follows. The
NorSIKT classification standard is described in Section II
followed by a description of the measurement setup used for
data collection in Section III. Section IV presents the fea-
tures used for classification. The machine learning algorithms
including their parameters used during the classification are
described in Section V. The main contribution of the paper,
the performance comparison, is presented in Section VI. We
conclude the article in Section VII.

II. NORSIKT CLASSIFICATION SCHEME

A. Classification Scheme

The “Nordic system for intelligent classification of vehicles”
(NorSIKT) vehicle classification scheme [11] is based on four
different classification levels as illustrated in Table I. Here,
a higher classification level, represents a more fine-grained
classification of the vehicles. For example, level one represents
the most coarse classification that essentially corresponds to
a detection of a vehicle only. Level four is on the other end
of the scale, i.e. the most detailed level with a total of 14
classes for light and heavy vehicles including with and without
trailers and distinguishing between, for example, motorcycles
and mopeds.

This newly developed standard will help national transporta-
tion authorities to easily compare different traffic counting



TABLE I
THE NORSIKT CLASSIFICATION SCHEME AND CLASSIFICATION OF THE MEASURED VEHICLES.

Level 1 Level 2 Level 3 Level 4

Motor
Vehicle
(MV)
3074

Light Motor
Vehicles + Motorcycle

(LMV)
2845

Motorcycles
(LMV1): 53

Motorcycle (MC): 50
Moped (MP): 3

Light Motor
Vehicles

(LMV2): 2792

Passenger car without coupled vehicle (PC WOC): 2466
Passenger car with coupled vehicle (PC WC)

Light goods road motor vehicle without coupled vehicle (LGV WOC): 326
Light goods road motor vehicle with coupled vehicle (LGV WC)

Light bus (LB)
Other light road motor vehicle (LV)

Heavy Motor
Vehicles
(HMV)

229

Heavy Motor
Vehicles

(HMV1): 229

Heavy goods road motor vehicle without coupled vehicle (HGV WOC): 86
Heavy goods road motor vehicle with coupled vehicle (HGV WC): 118

Heavy bus (HB): 27
Road tractor without coupled vehicle (RT WOC): 2

Road tractor with coupled vehicle (RT WC)
Other heavy road motor vehicle (HV)

equipments under consideration. Furthermore, it also provides
a mean for certification of equipment in the future.

B. Performance Metrics
The main performance metric is the classification rate of

the classifier. It basically indicates how well the classifier is
able to assign a vehicle to the correct class and is defined as

r̂ =
1

N

N∑
n=1

In(ĉn) (1)

where N is the number of classified vehicles and I(ĉn) is the
indicator function indicating whether the estimated class ĉn is
the true class c?n or not. It is defined as

I(ĉn) =

{
1 ĉn = c?n
0 ĉn 6= c?n

. (2)

The variance of the classification rate can be used as a measure
of how accurate the classification rate is. It is estimated as

σ̂2
r , V̂ar{r} = 1

N2

N∑
n=1

(I(ĉn)− r̂)2. (3)

Furthermore, in order to evaluate different measurement
equipment, NordFoU has also defined different performance
metrics in the form of error types [12]. Specifically, two types
of errors in individual vehicle categories are specified:

• Type A: For class cj , a vehicle of class c?j is assigned to
a class ĉi 6= c?j or missed completely (vehicles leaving
the class);

• Type B: For class ci, a vehicle of class c?j is incorrectly
assigned to class ĉi (vehicles entering the class).

In the scope of this paper, missed vehicles are not present
in the dataset used for classification. From the point of view
of the traffic monitoring it is more important to correctly
classify the number of vehicles in a particular class rather than
correctly classify a category of a particular vehicle. Thus, the
error rate of classification for vehicles classes is the difference
between type A and type B errors related to the number of
vehicles in the class. According to the NorSIKT standard, this
error rate should be less than 10% for all vehicle classes where
the sample size is larger than 50 [12].
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SE
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Fig. 1. Measurement setup used for the Amsberg tests.

III. TESTBED DESCRIPTION

The results reported in this paper are based on the mea-
surements at the Amsberg test site conducted in August
2013 in Amsberg, Sweden. These trials were arranged by
the Swedish Traffic Administration who also provided ground
truth assessment of the traffic. Beside the system which is
discussed in this paper, several other systems were evaluated
in the tests. The outcome of the tests, including the assessment
criterions are discussed [12].

The measurement setup is illustrated in Fig. 1. A pair of
sensor nodes of the type as described in [13] was deployed on
both sides of the two-lane, two-way highway. The two sensors
on the same side were separated by 6m and worked in pairs
for the detection and the estimation. Each node is equipped
with an accelerometer measuring the road surface vibrations
(normal to the road surface) and a magnetometer measuring
the x- and y-components of the magnetic field disturbances.
The signal from the accelerometer was preprocessed (filtered
and down-sampled) such that only the signal magnitude (en-
velope) is stored. The resulting signals are both sampled at
256Hz.



Fig. 2. Examples of magnetometer and accelerometer signals for each class at level three in the NorSIKT standard.

From the three day trial, an four hour period was chosen and
a ground truth for that period was established. In total, 3399
vehicles were registered. Out of these, 175 were not correctly
detected by the sensor nodes, hence, they are excluded from
the dataset. Additionally 150 vehicles were not used during
evaluation. Thus, 3074 passages were available for the evalu-
ation in total. Table I illustrates the classification of the ground
truth according to the NorSIKT standard introduced in Section
II.

Unfortunately, the dataset is heavily biased toward light
motor vehicles in general and passenger cars in particular.
This makes it difficult to evaluate classifiers that target level
4 classification with high confidence, especially since some
classes are heavily underrepresented. Thus, we focus on level 3
classification only in this paper. Examples of measured signals
for classes in level 3 are presented in Fig. 2.

IV. CLASSIFICATION FEATURES

Machine learning based classification is a three stage pro-
cess: First, a set of distinctive features is extracted from the
raw measurement data; then, the classification algorithm of
choice is trained using a subset of the data, the training set;
finally, the trained classifier is validated using the remaining
available data, the testing set. This section presents the fea-
tures chosen for the classification. The applied classification
algorithms, namely logistic regression (LR), artificial neural
networks (NN), and support vector machines (SVM) [14] are
described in the next section.

As mentioned earlier, machine learning techniques require
a set of features that will be used for distinguishing between
different classes. Naturally, the features should be chosen such
that they differ significantly for the different classes in order to
obtain a good class separation. The features can be completely
non-parametric, for example obtained by transforming the

measurement data or parameters obtained from a fitted model.
Non-parametric features have the advantage that there is no
intermediate estimation step required but they might not yield a
good enough separation of the classes. The number of features
is usually preferred to be small since a small number of
features can make it easier to interpret and understand the
classification model. Furthermore, extraction of good features
from raw data is an engineering art on its own and requires
good understanding of the problem at hand. A good choice
of features may significantly improve the accuracy of the
classifier.

In total, there are three raw signals available from the
sensors: The x- and y-components of the magnetometer (yxm[n]
and yym[n], respectively) and the z-component of the ac-
celerometer (yza[n]), see Fig. 2 for examples. In total, we derive
five non-parametric features, one based on the magnetometer
signals and four based on the accelerometer measurements.
Each of the features is described in details in turn below.

A. Magnetometer Magnitude Integral

The first feature is the discrete-time integral of the magne-
tometer magnitude calculated as

F1 = vTs

Nm∑
n=0

√
(yxm[n])2 + (yym[n])2. (4)

where Nm is the number of samples, v is the vehicle speed,
and Ts is the sampling time of the signal. The scaling factor
vTs transforms the integral from a discrete-time integral to a
discrete-space integral such that the passages are comparable
and independent of both sampling time and vehicle speed.

The magnetometer integral is based on the fact that larger
vehicles create more complex magnetic disturbances while
small vehicles create small ones (see Fig. 2 and [15]). Hence,



Fig. 3. An example of the extraction of a relevant part from an accelerometer
signal.

the integral tries to capture the overall magnetic variance
caused by a vehicle passing the sensor.

B. Accelerometer Magnitude Integral

The remaining features are based on the vibration data
measured by the accelerometer. First, the measurement data of
the passage is narrowed to a Na sample window around the
signal center where the signal magnitude exceeds 3 standard
deviations of the noise and a possible noise-offset is subtracted
(the outer, solid box in Fig. 3). Then, the second feature is the
integral of the windowed signal

F2 = vTs

Na∑
n=0

yza[n]. (5)

Again, this feature tries to capture the fact that the intensities
of the seismic signatures measured for light vehicles differ
heavily from the ones measured for heavy vehicles. Since the
integral is taken over the whole measurement window, the
overall vibration energy is considered.

C. Accelerometer Magnitude Distribution Integrals

In order to calculate features three to five, the accelerometer
window is further split into three sub-windows, each of size
Na,s = Na/3 (Fig. 3, dashed lines). Then, the integrals of
these three windows are calculated according to (5) but with
the reduced number of samples.

These features capture the fact that different vehicles have
different axle configurations, that is, instead of trying to
detect individual axles, these features provide an indication
of how the axles and the load are distributed relatively to the
measurement window.

V. MACHINE LEARNING ALGORITHMS

In this section, the three machine learning algorithms con-
sidered in this paper together with their parameters are briefly
introduced. The algorithms themselves are described and dis-
cussed more thoroughly in, for example, [14]. Furthermore, a
the naïve classifier for unbalanced datasets is discussed.

Note that since this is a three-class classification problem
(LMV1, LMV2, and HMV), all the algorithms use a one-
vs-all approach. This means that three models are fitted to
the training data; one model for every class. When fitting the

model for the kth class, the labels of the training dataset are
changed. The kth class gets label ’1’ for its samples while the
rest of the samples are labeled ’0’. Thus the model is fitted
to classify between two classes. During the validation with
the test dataset, three individual scores are estimated; one for
every model. Then, the class with the highest score is chosen
as the predicted class.

A. Logisitc Regression

For logistic regression (LR), the sigmoid function (6) is used
as the hypothesis function. Let F =

[
F1 F2 . . . F5

]T
be

the vector of features. Then, LR fits the model

hΘ(F) =
1

1 + e−ΘTF
(6)

to the data. The vector Θ =
[
Θ0 Θ1 . . . Θ5

]T
contains

the linear coefficients of the exponent in the denominator. The
coefficient Θ0 is the intercept term while the other five terms
determine the contribution of every feature.

For training, the cost function (7) is used. It includes scoring
of the result of the sigmoid function (the first term) as well as
a regularization part (the second term).

J(Θ) =
1

M

M∑
m=1

[−c?m log(hΘ(Fm))

−(1− c?m) log(1− hΘ(Fm))] +
λ

2M

N∑
n=1

Θ2
n.

(7)

Here, M is the number of samples in the training set, N is
the number of features, and λ is the regularization parameter
(set to 3).

B. Neural Networks

In the neural network (NN) classifier, the same sigmoid
function (6) is used. The network itself has three layers. The
input layer has six units (five features and the intercept term).
The output layer has three units (LMV1, LMV2, HMV). The
hidden layer has 25 units. The neuron weights were initialized
randomly and the back-propagation algorithm was used to
calculate gradient values for every learning iteration. As for
the LR, the cost function (7) was used for the NN classifier
as well.

C. Support Vector Machine

For the support vector machine (SVM), a linear kernel was
used (see [14] for details). Furthermore, the following cost
function was used for training:

J(Θ) =C

M∑
m=1

[
c?mcost1(Θ

TFm)+

(1− c?m)cost0(Θ
TFm)

]
+

1

2

N∑
n=1

Θ2
n,

(8)

where cost1(ΘTFm) and cost0(ΘTFm) are costs for positive
and negative cases respectively [14]. Again, this cost function
includes a regularization term in addition to the measure of fit.



TABLE II
CONTINGENCY TABLE FOR THE CLASSIFICATION RESULTS BY LOGISTIC

REGRESSION.

Ground truth
LMV1 LMV2 HMV

Fo
re

ca
st LMV1 20.0 23.3 0.3

LMV2 0.9 2528.9 10.2
HMV 0.1 155.8 149.5

TABLE III
CONTINGENCY TABLE FOR THE CLASSIFICATION RESULTS BY NEURAL

NETWORK.

Ground truth
LMV1 LMV2 HMV

Fo
re

ca
st LMV1 20.0 41.2 1.0

LMV2 1.0 2510.4 12.0
HMV 0.0 156.4 147.0

Furthermore, C is a regularization parameter and was chosen
to be 10.

D. Naïve Classifier

In many real situations the distribution of classes of vehicles
can be unbalanced, for example due to seasonal variations (e.g.
less LMV1 during winter) or specific traffic restrictions (e.g.
signs forbidding HMV). In this case, vehicles of a specific
class start to dominate. A naïve classification approach would
be to assign all vehicles to the dominating class. While this
approach could appear as counterintuitive it may, in fact,
achieve a very high classification rate. However, the classifi-
cation rate in individual classes would be obviously extremely
poor. Since our dataset is an example of such an unbalanced
dataset (LMV2 dominates) we use this classification approach
for discussion purposes in Section VI.

VI. RESULTS AND DISCUSSION

A. Test and Validation Datasets

Recall from Table I that the dataset consists of 53 passages
in the class LMV1, 2792 passages of LMV2 and 229 pas-
sages of HMV1. As practice suggests, approximately 60%
(32 passages) of the available LMV1 passages were used to
form the training dataset. The rest (21 passages) was used
for the test dataset to validate the trained models. In order
to keep the training dataset more balanced, the presence of
LMV2 and HMV classes was restricted to 69 and 84 passages
respectively. Thus the size of the testing dataset is bigger
than the training dataset and consists of 2889 passages being
highly biased toward LMV2 class. To minimize the influence
of passages chosen for the training dataset and get the averaged
performance of the classifiers, the training and testing datasets
were randomly generated 10 times from the initial dataset. LR,
NN and SVM were then applied to the training dataset. The
performance of the trained models was assessed by estimating
the classes for passages in the test dataset and comparing them
with the ground truth.

TABLE IV
CONTINGENCY TABLE FOR THE CLASSIFICATION RESULTS BY SUPPORT

VECTOR MACHINE.

Ground truth
LMV1 LMV2 HMV

Fo
re

ca
st LMV1 16.6 26.6 7.5

LMV2 4.1 2549.6 27.3
HMV 0.3 131.8 125.2

TABLE V
CLASSIFICATION RATES.

LMV1 LMV2 HMV Overall
LR 95.2% 93.4% 93.4% 93.4%
NN 95.2% 92.7% 91.9% 92.7%

SVM 79.0% 94.2% 78.3% 93.2%

B. Results

The performance of the different classifiers are presented in
Table II, Table III, and Table IV in the form of contingency
tables for LR, NN and SVM, respectively. The values in
the diagonals of the tables suggest that LR classification
achieves the highest number of correct classifications for
LMV1 and HMV while SVM is best in recognizing LMV2.
The values outside the diagonals indicate which classes that
get confused with which. It is particularly interesting that for
all classifiers, the largest mistakes occur around LMV2s that
either get classified as LMV1s or HMVs (middle columns).
This indicates that the features for LMV2 can be quite diverse
ranging from the boundary to very small vehicles to large
vehicles.

Table V shows the classification rates for each algorithm for
the different classes in the dataset as well as the overall classi-
fication rates. The resulting classification rates are basically a
reflection of the diagonals of Tables II-IV and hence, the same
results are obtained for the different algorithms. Additionally,
the last column in Table V shows the overall performance
of each algorithm. Note, however, that while the overall
performance of all algorithms is similar, the classification rates
of the individual classes might be significantly lower. The fact
that the overall classification rate is similar is due to the test
dataset that is dominated by LMV2 which in turn heavily
influences the classification rate.

Finally, Table VI shows the error rates for both type A and
B errors are according to NordFoU for every class.

C. Discussion and Future Work

As the results in the previous section show, logistic re-
gression achieved the best overall classification rate of the
methods applied. However, the results have to be interpreted
very carefully. First, note that the available dataset is heavily
biased towards the LMV2 class. With a naïve classifier with
respect to LMV2 as discussed in Section V-D, a classification
rate of 94.1% would be obtained. At first this would actually
be close to the performance of all classification algorithms
considered here. Thus, it is important to consider not only the
overall classification rate but also the classification rates for



TABLE VI
ERROR RATES FOR TYPE A AND B ERRORS DEFINED BY NORDFOU.

LMV1 LMV2 HMV
Type A Type B Type A Type B Type A Type B

LR 4.8% 1.0% 6.6% 10.7% 6.6% 6.2%
NN 4.8% 2.1% 7.3% 12.2% 8.1% 5.8%

SVM 21.0% 5.7% 5.8% 36.5% 21.7% 6.3%

the individual classes which show the inferiority of the naïve
classifier.

Furthermore, the worse performance of the NN and SMV
classifiers could probably be due to the overfit caused by the
size of the training dataset, which is in turn restricted by the
number of LMV1 passages. Additionally, the regularization
parameters for the algorithms were chosen based on qualified
knowledge. Clearly, cross-validation should be used instead,
in order to optimize the parameter choice, for example using
Monte Carlo simulations. However, due to the low number of
samples in the LMV1 class a further split of the dataset is
problematic.

Studying the effects of the different features on the classifi-
cation rate is out of scope of this paper. However, the design
of good features is an important component for successful
classification. Therefore it is an important direction for future
work.

Finally, the presented work performs classification at the
third level of the NorSIKT classification scheme, which con-
sists of only three classes. An ultimate goal is to be able to
classify vehicles at the most detailed, fourth level with 14
classes. This task would require a significant improvement
in the diversity of the dataset (new measurements and a
labeled dataset which is generally expensive to obtain would
be required), experimentation with extraction of different fea-
tures from raw data, and possibly considering other machine
learning methods.

VII. CONCLUSION

This paper presented a comparison of three different ma-
chine learning techniques for the task of vehicle classification
based on magnetometer and accelerometer measurements from
road side sensors. The considered techniques were logistic
regression, neural networks and support vector machines. The
algorithms were evaluated on a large dataset, consisting of
3074 vehicle passages in total. Five features were extracted
from the measurements and then used as input data for
the algorithms. Contingency tables, classification rates, and
two error rates were used to assess the performance of the
algorithms.

It was found that logistic regression showed the best per-
formance with the average classification rate on the validation

dataset of 93.4 % and maximum 4.1% error in a particular
class. The main limitation found in this study is the dataset:
Even though it consists of a large number of samples, it is
heavily biased towards one of the classes which makes it
difficult to properly split the data into training, validation, and
testing data.
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