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A Two Filter Particle Smoother for Wiener State-Space Systems

Roland Hostettler!

Abstract—In this article, a two filter particle smoothing
algorithm for Wiener state-space systems is proposed. The
smoother is obtained by exploiting the model structure. This
leads to a suitable proposal density for the backward filter
inherent in the problem instead of introducing an artificial
one. Numerical examples are provided in order to illustrate
the proposed algorithm’s performance and to compare it to
current state of the art smoothers from the literature. It is
found that the proposed method yields comparable results with
less computational complexity as backward simulation-based
particle smoothing algorithms.

I. INTRODUCTION

Bayesian filtering and smoothing are two closely related
and important tasks in many different applications ranging
from state estimation for control in feedback systems to
target tracking in marine, space, or vehicular applications.
The filtering problem is concerned with inferring the state
x (where the subscript £ = 1,...,7T denotes a discrete time
instant) given a set of data up to ¢, y1.+ = {y1,%2,..-, Yt}
that is, we are interested in finding the (marginal) filtering
density p(z¢|y1.:). The problem of smoothing is closely
related but here we are given a set of data y;. where
1 <t < T, and we are interested in the marginal smoothing
density p(z¢|y1.7) instead. Because of their importance, they
have been studied extensively, see, for example, [2]. It is well
known that analytical solutions can only be found for a few
special cases such as linear systems with Gaussian process
and measurement noises, where the resulting algorithms
are the Kalman-Bucy filter [3] and the Rauch-Tung-Striebel
smoother [4]. Otherwise, we have to resort to some kind
of approximative method, for example unscented Kalman
filters [5], unscented Rauch-Tung-Striebel smoothers [6],
or sequential Monte Carlo (SMC) methods [7]-[9]. SMC
methods have proven to be very useful and popular, partly
due to the cheaply available computational power of today.
While filtering can, in many cases, be done efficiently,
smoothing is somewhat more complicated.

Roughly, SMC state smoothing algorithms can be divided
into two categories: (a) Forward filtering backward smooth-
ing algorithms that use a particle filter in the forward pass
and refine the particles by resampling or reweighing in the
backward pass, and (b) two filter smoothers that run two
individual filters (one that iterates through the data in the
forward direction and one that iterates in the backward direc-
tion) and combine the information from the two filters [10].
In both methods, however, a few practical problems arise. For
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the forward filtering backward smoothing algorithms, one of
these problems is the fact that the computational cost can
increase quadratically with the number of particles, which is
very impractical. Even though solutions that (asymptotically)
achieve linear computational cost have been proposed [11]-
[13], these methods might not be feasible in practice due to
numerical issues or high rejection rates. Other approaches
try to exploit the inherent structure of the system in order
to reduce the dimensionality of the problem, for example
by using Rao-Blackwellization [14], [15]. When using two
filter smoothers on the other hand, it is not quite obvious
how to address the backward filtering pass and different
solutions have been proposed. Briers et. al. [16] introduced a
thorough analysis of two filter smoothing using SMC. There,
an additional artificial proposal density was introduced in
order to run the backward filter. This approach was further
extended in [17] where it was shown that it is valid for a
broader class of systems than originally thought.

In this paper, we consider systems with linear, Gaussian
process dynamics and non-linear measurements, that is,
Wiener state-space systems of the form

xy = A(t)xi—1 + vt
Y = g(x4, e, t).

(1a)
(1b)

Here, z; € RM= is the state at the discrete time f,
A(t) € RN=*Nz g the state transition matrix (possibly time-
varying), and v; ~ N (0,Q(t)) is the process noise. (Note
that for brevity, the explicit dependence of A(t) and Q(t) on
t will be discarded for the remainder of this paper.) In (1b),
y; € RNy is the measurement at time ¢, g(-) is the non-linear
measurement function, and e; ~ p(e;) is the measurement
noise. Furthermore, we assume that the initial state xq is a
Gaussian random variable according to

p(x0) = N (zo; po, Xo)- 2

The main contribution of this paper is an explicit formula-
tion of a bootstrap filter-based two filter smoother addressing
the system in (1). The resulting smoother is closely related to
the work in [16]-[17] but here, we show how a formulation
of the backward filter naturally arises by exploiting the
model structure in (1) instead of introducing an artificial
prior distribution of the state (Section II). One of the biggest
advantages of the proposed smoother is the fact that the
model structure will allow for efficient implementation. The
properties of the proposed smoother are illustrated using two
simulation examples in Section III.



II. METHOD

In this section, we derive the proposed two filter particle
smoother. First, note that the marginal smoothing density can
be factorized as

p(@elyrr) = p(Te|yre—1, ye1)
p(xe|y1e—1)p(yer|T:) (3)
p(yt:T|y1:t71)
which is the standard formulation for the two filter
smoother [18]. However, we do not stop here and apply
Bayes’ rule a second time in order to obtain

P(@ilyr—1)p(@e|yer)p(Yer)
P(Yer|y1:e—1)p(w1) 4)
p(@elyr:i—1)
o ntlglit=1)

p(z¢)
Note that the measurement y; was included in the backward
part instead of the forward part here. It turns out that this
factorization makes it possible to use a regular particle
filter that targets the factor p(z¢|y;.+—1) and a backward
particle filter targeting p(x:|ys.r). Each of the two filters
is introduced in the sections below, which is then followed
by the formulation of the smoother itself.

p(ze|yrr) =

p(ze|yeT)-

A. Forward Filter

The numerator of the first factor, p(z¢|yi.t—1), in (4)
can easily be found from a regular particle filter targeting
p(z1.4|y1:¢). A bootstrap sampling importance resampling
(SIR) particle filter can be used to obtain the following
approximation of the joint filtering distribution (see [7] or [§]
for detailed introductions to particle filtering)

Z wtlt)é (z1.4 —

where d(x) is the Dirac-delta function of z, xgnt)l , 1s the
nth state trajectory from 1 up to ¢ given the measurements
up to time ¢, and wil t) is the importance weight of the
corresponding trajectory at time ¢. In the bootstrap particle
filter, the particles are propagated using the state transition

density according to

2y ~ plaelef™) (©)
which can readily be found from (la) to be
= N(w; Ary1,Q). (7N

The particle weights are given by

ayfy =w, plulet)

)
o — P ®)

t‘t o M ~(n)’
2 on=1 Wy
After calculating the weights, a resampling step might be
used if the concentration of particles in the interesting area
of the state space is low. By doing so, trajectories with

low importance weight are replaced by trajectories with high
importance weight instead.

151 t|y1t

EUPEENGC

p(zt\l’t—l)

Next, given the approximation (5) and the state transition
density (7) an approximation for the one step ahead predic-
tion p(w¢|y1.c—1) can easily be obtained as

P($t|y1:t71) = /

X P(T1:—1|Y1:6—1)dT1:0—1

00 M
’*‘4/ p(ze|lre—1) Z wﬁi”f‘t,l
- m=1

p(xt|1't71)

X 8(x1:4-1 — JCETi‘t_l)dmlzt—l
= Zwiml)lt »( xt|x( ))
m=1
= Z wi™ Nz Ax™,Q) )
m=1

Furthermore, the denominator p(x;) in (4) can be found
as

p(xe) = / (x4, Tp—1)dTs1
oo (10)
= / p(xe|wi—1)p(we-1)drs1.
— 00
It is straight forward to see that (10) is a recursive expression

and since both p(z¢) and p(x¢|x;_1) are Gaussian, p(z;) will
be Gaussian too according to

p(@e) = N (243 i, Se) (11)
with
e = Apig—1 (12a)
=Q+ A%, AT, (12b)
Putting together (4), (9), and (11)-(12) yields
M m m
p(xe|y1e—1) x Y om=1 wt( 1)|t Nl Axﬁ_i, ) (13)
p(71) N (@45 e, 2¢)

for the first term in (4).

B. Backward Filter

The term p(zt|y:.r) can be seen as a marginal back-
ward filtering density which can be found as follows. Let
p(x¢.7|ye.7) be the joint backward filtering density. Then,

p(ﬂctlyt;T) = / p(xt:T‘yt:T)d$t+1:T~ (14)

—o0
Furthermore, we can express the joint backward density as
pelzer, yervr)p(@er|Yetrr)
p(Ye|ye+1.1)
< p(yelze)p(we.r|yes1:r)
= p(yelee)p(@elweqr.r, Yrr1.m)
X p(Tir1:7|Yer1:7)
= p(ye|z)p(ze|es1)
X p(Tyr1:7|Yer11)-

p(@erlyer) =

15)



In (15), p(y¢|z:) is the likelihood (which is given through the
model). The inverse process dynamics p(z¢|z:+1) are key in
the development of the proposed smoother. Since the state
dynamics are linear and Gaussian, we can use

p(@eqa|ze)p(ze)
p(ze41)
with p(x¢41|z:) as in (7), and p(x;) as well as p(x411) as

in (11). It follows that p(xz¢|z;+1) is also Gaussian of the
form [19, pp. 337-339]

p(xe|Tiq1) = (16)

(] zig1) = N (@6 papeg1, Sejer1) (17)
with
a1 = O — S AT(Q + AX AT) A, (182)
=(E+ AT AT
and
Btfe41 = Dpje41 (ATQipn + 27 pe) - (18b)

The quantity p(z;y1.7|ys+1.7) in (15) is simply the joint
backward filtering density at ¢ + 1.

We can now formulate the following backward filtering
recursion. Assume that we want to target the non-normalized
joint backward filtering density, that is, p(zyr|ys.7) us-
ing importance sampling. Then, we can express the non-
normalized importance weights v(lT) as

plyela™ p(a™ [T lyer )

q(z{™)

where g(x) is the proposal density. Since we aim at running
the filter backwards in time, a filtering approximation of
P(Tt41:7|Yt+1.7) of the form

M
) ~ Z U§T1)|T6(xt+1:T

m=1

~(m) _

Yy = (19)

P(Ter1.7 Y1 §+1 T|T> (20)

will be available at time ¢. Furthermore, choosing the inverse
process dynamics as the proposal density

q(xe) = p(ai|Ti41) @2y
yields the non-normalized backward filter weights
By o< o rp(yela™) (22)

which is essentially the same expression as obtained for
a particle filter targeting p(z1.¢|y1.+), but in the backward
direction. We then obtain the approximation of the form (20)
by normalizing the weights (22)
~(m)
(7n) Ut|T
=3 o (23)
RS T
It is very important to point out that in this case, we
have been able exploit the model structure in order to find
a proposal distribution inherent in the problem that we
can sample from (similar to the bootstrap proposal in the
forward filter). This is, however, not the theoretically optimal
proposal.

The final problem is how to initialize the backward recur-
sion. First, note that at ¢ = T" we have the backward filtering
density as

p(zrlyr) o< p(yr|zr)p(zT). (24)

A straight-forward choice would then be to initialize the
backward filter by using p(xr). Since p(zr) has quadrat-
ically increasing variance (see (12)) this is impractical,
though, as this density would propose many particles in
irrelevant areas of the state space. However, we know that
the forward filter is generally capable of keeping the particles
in the interesting area. Hence, one approach is to initialize
the backward filter by re-using the forward particles x(TTT)
These particles were generated by drawing samples from
p(xT|x(T"1)1) and thus, they have to be reweighed for the
backward pass according to

i o 2l
e |25))
p(yrley™)p(=5™)
(™)

wiyp(ay")

§m1)|t 1p(37T )|

(25)

w Ty )

where (8) was used to arrive at the last expression.

C. Smoother

We can now collect the results from the previous two
sections in order to obtain the final formulation of the two-
filter smoother. Recall that
p(ze|yr:e—1)

p(l‘t)
p(ze|yr:e—1)
p(xe)
Then, using (13) and (20) in (26) yields the approximation

(up to proportionality)

M n n
o) % Zrm V=N Az, Q)
1:T) "~
‘ N(fct;ﬂbt7zt)

0 M

L2

X 5(xt:T —x

P($t|y1;T) x P(xt\yt:T)
(26)

o0
/ p(l‘t:T|yt:T)d96t+1:T
— 00

)i @7)
M n n
2n=1 wt(—)l\t—lN(xt; Axi—)l’ )

N (243 e, X))
(m) (m)
X Z Uyr O(xy — lt‘T)

From (27), the non-normalized smoothed weight can be
found as

M (n) (m) (n)
(m) D n=1 wtzl\t—l'/\/( t|;vA 1110 @)

N (‘ri(t\T); He, Et) 9




and equation (27) can be rewritten as

(m))

p(xi|yr.r) Z v 8w — a7 (29)

where (m)
Jm) Y
Vir = —(m) "
S
This finally yields the two-filter particle smoother sum-
marized in Algorithm 1. Typical resampling techniques for
mitigating sample impoverishment have been included in
both the forward and backward filters in steps 2c) and
4d) [7]. Other improvements such as jittering, prior editing,
resample-move (for example using MCMC kernels), or Rao-
Blackwellization could be incorporated easily as well if
necessary [7], [9].

(30)

Algorithm 1 Two-Filter Particle Smoother with Linear State
Dynamics

1) Initialize the forward filter xélg ~ p(z0), w((;‘lo) =1/M
2) Fort=1,...,T

a) Propagate the particles according to (6)-(7)

b) Calculate the forward particle weight using (8)

o) If (ZM (w2 ) < My
i) Resample with replacement such that

Pr (xt = wilt)) = wiﬁ)

ii) Set wt(l’? =1/M
d) Update the prior statistics according to (12)
3) Initialize the backward filter using (25), (28) and (30)
4) Fort=T-1,...,1
a) Backward propagate particles by using (17)-(18)
b) Calculate the backward particle weights accord-
ing to (22)-(23)
¢) Calculate the smoothed particle weights us-
ing (28) and (30)

-1
) I (0L (o)) < My
i) Resample with replacement such that
_ (m) (m)
Pr (xt = a:t‘T) Uy

ii) Set wg;;) =1/M

III. NUMERICAL ILLUSTRATION

In order to illustrate the performance of the proposed
smoother, two different simulation examples are provided
here and the results are discussed.

A. Linear System

In the first example, the proposed smoother is applied to a
linear Gaussian state space system. This in order to compare
the performance of the smoother to the Rauch-Tung-Striebel
smoother [4] which is known to be the minimum mean

0.4 || —— 2E-PS I
0.9 ||~~~ RTSS

E{z; — jft\T}

—-0.2
—0.41 | | | | ]
20 40 60 80 100
t/s
(@)
05| —ZI‘J—PS | |

- - - RTSS

E{z; - i’t\T}

—-0.5| 8

20 40 60 80 100
t/s
(b)

Fig. 1. Mean estimation error of the 100 MC simulations for the linear
system (31) for the Rauch-Tung-Striebel smoother (dashed) and two filter
particle smoother (solid).

squared error estimator for such systems. This comparison

will hence allow us to see how the proposed particle approxi-

mation method performs compared to the analytical solution.
The system under consideration is given by

1 0.5
Ty = [O 1:|xt1 + vy

Y = [1 0] Tt + €4

with
|5
Ho = 3|’
10 0
20_[0 20]’
Q=1I,
and
R=1.

In total, 100 Monte Carlo simulations were run. The
number of particles in the particle smoother was chosen to be
M = 500 and systematic resampling [20] with a threshold
for the effective sample size My = M /3 was used.

Fig. 1 shows the mean estimation error for both states.
As it can be seen, the error for the proposed method (2F-
PS) matches the error for the Rauch-Tung-Striebel smoother
(RTSS) almost exactly. Furthermore, the mean squared error
estimated using the 100 Monte Carlo simulations is depicted
in Fig. 2. Even the mean squared error is essentially equal
for both smoothers and both states. This indicates that the
proposed smoother indeed is a minimum mean squared error
estimator.
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Fig. 2. Mean squared error of the 100 MC simulations for the linear

system (31) for the Rauch-Tung-Striebel smoother (dashed) and two filter
particle smoother (solid).

B. Target Tracking

In the second example, the smoother is used to estimate the
trajectory of a target in a tracking scenario where a target’s
range and bearing are measured. This is a very common
problem, for example in air traffic control, robotics, or
autonomous vehicles. In this example, the proposed smoother
is compared to a standard forward filtering, backward sim-
ulation (FFBSi) particle smoother [9] in order to assess the
performance.

The dynamics are modeled using a constant velocity
motion model of the form

1 0 Ty, O

- 01 0 T o

t 00 1 0 t—1 T Ut
00 O 1

Here, the state vector z; is given by
T
ze=[pt i v o]
where p? and p} are the x- and y-positions of the target at
time ¢, respectively, and v¥ and v} are the velocities in the
respective direction. The measurements are the range and
bearing of the target at time ¢ which are given by

o= [VEP TGP
atan2(py, pf)

(atan2(-) is the four-quadrant inverse tangent function.) The
parameters used in the simulations are as follows:

-10

25

Ho 2 )
-1

+€t.

100 - H
g
S 50} =
=
0 [ |
| | | | | |
—-100 -80 —-60 —40 -—-20 O
p* / m

Fig. 3. Example trajectory (solid) together with the estimated trajectories
for the two filter smoother (dashed) and FFBSi smoother (dotted).

[10 0 0 0

0 500
=10 0 1 of

[0 0 01
Q =1,

1 0
R‘_o 0.01]°

and T, = 1s.

M = 500 particles were used in the particle smoother.
In the FFBSi smoother, Mp = 1,000 forward particles and
Mg = 500 backward particles were used such that the
smoothed posterior density is approximated by the same
number of particles in both smoothers. In this example, a
total of 20 Monte Carlo simulations were run.

Fig. 3 and Fig. 4 depict one random example trajectory
and the corresponding measurement signals considered in
the simulation. In Fig. 3, the true trajectory (solid) and the
position estimates for the two filter smoother (dashed) and
FFBSi (dotted) smoother are shown. It can be seen that both
smoothers are able to accurately track the target, especially
close to the sensor at the origin and when a constant motion
is maintained.

Fig. 5 shows the estimated mean squared error for the 20
Monte Carlo simulations for both the position as well as the
speed. It shows that the MSE for both filters are essentially
equivalent and follow the same trend.

The biggest advantage of the proposed method, how-
ever, lies in the possibility of propagating the particles by
using matrix operations only. This reduces computational
requirements. A comparison of the average runtime over the
20 Monte Carlo simulations illustrates this: The two filter
smoother took 5.9 s for one run on average, while the same
metric is 164.1s for the FFBSi smoother. (Note that these
numbers are without any code optimizations.)

IV. CONCLUSIONS

By exploiting the model structure of systems with linear
state dynamics and non-linear measurement functions, a
fast two filter particle smoother has been developed. Its
properties have been illustrated using numerical simulations.
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Fig. 3. (a) Range, and (b) bearing.

The simulations showed that the proposed method performs
comparably to the existing state of the art methods but at
significantly lower computational cost.

Finally, note that since the method is based on standard
importance sampling-based particle filters, the drawbacks of
these follow directly to the proposed method. This includes,
for example, the curse of dimensionality, meaning that high
dimensional problems cannot be solved easily.
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