
Joint Vehicle Trajectory and Model Parameter
Estimation using Road Side Sensors

Roland Hostettler, Wolfgang Birk, and Magnus Lundberg Nordenvaad

This is a post-print of a paper published in IEEE Sensors Journal. When citing this work, you must
always cite the original article:

R. Hostettler, W. Birk, and M. Lundberg Nordenvaad, “Joint vehicle trajectory and model
parameter estimation using road side sensors,” Sensors Journal, IEEE, vol. 15, no. 9, pp. 5075–
5086, Sept 2015

DOI:
10.1109/JSEN.2015.2432748

Copyright:
c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.



1

Joint Vehicle Trajectory and Model Parameter
Estimation using Road Side Sensors

Roland Hostettler, Member, IEEE, Wolfgang Birk, Member, IEEE, Magnus Lundberg Nordenvaad

Abstract—This article shows how a particle smoother based
system identification method can be applied for estimating the
trajectory of road vehicles. As sensors, a combination of an
accelerometer measuring the road surface vibrations and a
magnetometer measuring magnetic disturbances mounted on the
side of the road are considered. First, sensor models describing
the measurements of the two sensors are introduced. It is shown
that these depend on unknown, static parameters that have to
be considered in the estimation. Second, the sensor models are
combined with a two-dimensional constant velocity motion model.
Third, the system identification algorithm is introduced which
iteratively runs a Rao-Blackwellized particle smoother to estimate
the vehicle trajectory followed by an expectation-maximization
step to estimate the parameters. Finally, the method is applied
to both simulation and measurement data. It is found that the
method works well in general and some issues when real data is
considered are identified as future work.

Index Terms—State Estimation, Parameter Estimation, Ac-
celerometers, Magnetometers

I. INTRODUCTION

Estimating target trajectories is of interest in many different
applications such as air traffic control, tracking marine vessels,
or estimating the driving path of ground-borne vehicles [2].
This is often achieved by combining a motion model for the
target with a sensor model that describes the measured signal
as a function of the motion. The motion model describes the
motion in a way suitable for the application, for example using
Cartesian or polar coordinates and it is possible to convert the
problem between the different representations [3]. The sensor
model is given by the sensing technique used and it is not
uncommon that it depends on a set of unknown variables
parameterizing the model [4].

In this article, estimating the vehicle trajectory using a
combination of an accelerometer and a magnetometer, both
mounted in a single sensor unit and installed on the road sur-
face, is considered. The accelerometer measures the vibrations
on the road surface caused by a vehicle passing the sensor. The
magnetometer on the other hand measures the field vector of
local magnetic disturbances caused by the metallic mass of a
vehicle. In this setting, both sensor models are nonlinear and
depend on a set of static, material-specific parameters which
complicate the tracking problem.

Target tracking using both kinds of sensors has been con-
sidered individually before. For example, it has been shown
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that it is possible to detect and track activities of heavy
military vehicles by measuring ground vibrations [5]. In [6],
it was shown that it is feasible to use an extended Kalman
filter for tracking road vehicles using accelerometers. Problems
arose regarding the material parameters which were treated as
tuning parameters. Similarly, magnetometers have been used
for tracking in different contexts such as underwater object
tracking or road vehicle tracking [7]-[10]. Magnetometers,
in combination with odometry, have also been shown to
be a viable option for indoor simultaneous localization and
mapping (SLAM) for robots [11], [12] as well as humans [12],
[13]. Finally, location tracking by using magnetometers and
MEMS inertial measurements based on a priori known maps
was proposed in [14]. However, fusion of the accelerometer
and magnetometers for vehicle trajectory estimation under the
above mentioned circumstances is a novel approach.

Estimating both, the system states (in this case the target
trajectory) and model parameters is a well-known problem
that can be approached in many different ways. One popular
method that has proven very efficient, especially for linear
systems, is to augment the state vector with the unknown
parameters, treating them as extra states [15]. Then, the pa-
rameters are estimated on-line together with the original states,
for example by using a Kalman-Bucy filter. This approach
can, however, be problematic in nonlinear systems where
approximative methods such as particle filters have to be
employed. In such a situation, special attention has to be
paid if the state augmentation approach is chosen since the
static parameters might lead to particle impoverishment [16],
[17]. Instead of augmenting the state vector which yields
continuously updated parameter estimates, one can also re-
sort to on-line methods that yield point estimates. One such
approach was introduced in [18] where Markov chain Monte
Carlo simulation in conjunction with fixed-lag smoothing was
used to obtain the estimates. Furthermore, [19] showed how to
use sequential Monte Carlo methods together with a gradient
search based on-line expectation maximization.

If on-line estimation is not a requirement, for example when
auto-tuning or initializing a measurement system, one can
instead resort to off-line approaches. In [20], a particle filter
for batch estimation of parameters only was introduced. Other
methods use gradient based maximum likelihood estimation,
see for example [21]. Yet another approach is to separate the
task into two mutually coupled problems [15]. When using
such an approach, one iteratively first estimates the states
using a smoother (given feasible candidates of the parameters),
followed by an expectation maximization step where improved
estimates of the parameters are found based on the new state
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estimates [22], [23].
The contribution of this work is twofold. First, it is shown

how the nonlinear sensor fusion problem described above can
be formulated in terms of a dynamic motion model and two
sensor models. Second, the expectation-maximization based
system identification algorithm introduced in [23] is applied
for estimating the vehicle trajectory and model parameters.
While not being an on-line method, this approach has proven
to be a good choice in such situations and is the one favored
here as real-time operation is not a requirement. For obtaining
smoothed state estimates, a forward filtering backward sim-
ulation Rao-Blackwellized particle smoother based on [24],
[25] and [26] is proposed. This is motivated by the fact that
both sensor models are non-linear functions of the states which
requires either the usage of, for example extended or unscented
Kalman smoothers, or particle smoothing methods where it
has been shown that the latter have superior performance
in general, see for example [27]. Also, there are a total of
6 unknown model parameters to be estimated which would
considerably blow up the state vector if the state vector
augmentation approach were chosen. Finally, the method is
also compared to the case where the joint smoothing den-
sity is approximated using an unscented Rauch-Tung-Striebel
smoother (URTSS) [28] as introduced in [29]. Approximating
the posterior using an URTSS is chosen for comparison as this
approach can be deemed the most comparable approach to the
proposed method, see above.

The remainder of this article is organized as follows. The
motion and sensing models governing the problem are intro-
duced in Section II, followed by the description of the method
in Section III. The performance under ideal conditions is
verified using Monte Carlo simulations in Section IV. Finally,
the method is applied to real measurement data in Section V
and concluding remarks are given in Section VI.

II. MODEL

A. Motion Model

The motion of a target can be described by using different
models, depending on the parametrization of the coordinate
system and the type of motion of interest. For a vehicle
moving along a road, a Cartesian coordinate system with the
x-coordinate rx in longitudinal and the y-coordinate ry across
the road (lateral) is a reasonable choice. Then, using the dis-
cretized two-dimensional constant velocity motion model [3],
[30], the motion of a vehicle is described by

xt+1 =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

,A

xt +


T 2
s

2 0 0 0

0
T 2
s

2 0 0
0 0 Ts 0
0 0 0 Ts


︸ ︷︷ ︸

,B

vt (1)

where the state vector is xt =
[
rxt ryt ṙxt ṙyt

]T
, the

subscript t = 1, . . . , T denotes the discrete time index, and
Ts is the sampling time. The process noise vt is assumed to
be of the form

p(vt) = N (vt; 0, Q) (2)

Wheel

Suspension

Road Surface

Fig. 1. Illustration of the interaction between a vehicle wheel and the road
surface.

with

Q =


σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
x 0

0 0 0 σ2
y

 (3)

Furthermore, the initial state x1 is assumed to be distributed
as

p(x1) = N (x1;µx1
, Cx1

) (4)

Finally, the location of the target at time t is given by the
vector

rt =

rxtryt
0

 (5)

The position in z-direction rzt is assumed to be zero since the
vehicle and sensor are approximately in the same plane.

B. Accelerometer Sensor Model

It has been shown [31] that vibrations normal to the road
surface measured by an accelerometer can be modeled as a
linear system of the form

Za(ω) = H(r, ω)U(ω) + Ea(ω) (6)

where ω is the circular frequency, U(ω) is the excitation,
Za(ω) the measured vibrations, Ea(ω) the measurement noise,
and r is the vector pointing from the sensor to the source. The
transfer function H(r, ω) is given by

H(rt, ω) = α(ω)H(1)
0 (−k(ω)|r|) (7)

where α(ω) is a frequency dependent, complex gain, H(1)
0 (x)

is the Hankel function of the first kind of order zero [32], and

k =
ω

cp(ω)
− iη(ω)

is the complex wavenumber with cp the frequency-dependent
phase velocity and η an attenuation constant.

Assuming that the parameters α(ω) ≈ α and η(ω) ≈ η
are approximately constant for a limited frequency band of
interest and that cp(ω)� ω, (7) can be approximated as

H(r, ω) ≈ κiH(1)
0 (iη|r|) (8)

where κ , |α| and the imaginary unit i ensures a real-valued
function.

Note that (8) is independent of ω and hence, taking the
inverse Fourier transform of the measured signal (6) yields

za,t ≈ κiH(1)
0 (iη|r|)ut + ea,t. (9)
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For the source, note that the excitation ut is caused by the
interaction of the vehicle’s 2P wheels (where P is the number
of axles) and the road (Fig. 1). This interaction results in a
normal force which depends on the road surface profile as
well as vehicle properties such as the characteristics of the
suspension and the vehicle weight. The road surface profile is
of interest in different applications including riding comfort
assessment or road maintenance [33]-[35]. It is commonly
modeled as a random process and characterized by a power
spectral density (PSD) such as specified by the ISO 8608
standard [36]. It is thus assumed that the excitation can be
modeled as a zero mean, Gaussian random variable in the
time domain, that is,

ut ∼ N (0, 1). (10)

Considering all P axles and rp,t being the position of the
pth axle at time t, the measurement model becomes

ya,t =

P∑
p=1

κiH(1)
0 (iη|rp,t|)ut + ea,t (11)

Without loss of generality, it is assumed that P = 2 for the
remainder of this paper, which represents the largest group of
vehicles including passenger cars and light trucks. Thus, the
measurement model becomes

ya,t = κi
(
H(1)

0 (iη|r1,t|) +H(1)
0 (iη|r2,t|)

)
︸ ︷︷ ︸

,ha(xt)

ut + ea,t (12)

The locations of the axles r1,t and r2,t can be expressed by
using the wheelbase l as

r1,t = rt +

l/20
0

 and r2,t = rt −

l/20
0

 (13)

The measurement noise in the sensor ea,t is due to thermal
noise, sensor imperfections, etc. and is modeled as white
Gaussian noise with PDF

p(ea,t) = N (ea,t; 0, σ2
a). (14)

C. Magnetometer Sensor Model

Target tracking using magnetometer sensors has been ex-
plored quite extensively [8]-[10]. It has been shown that the
measured magnetic disturbance caused by a vehicle passing a
magnetometer can be modeled as a dipole or, if the magnetic
mass of the vehicle has a larger geometry, as a series of
dipoles [10]. The magnetic disturbance caused by a dipole
is given by

ym,t =
3(rTt m)rt − |rt|2m

|rt|5︸ ︷︷ ︸
,hm(xt)

+em,t (15)

where ym,t denotes the measured magnetic disturbance, a 3×1

vector, and m =
[
mx my mz

]T
is the magnetic dipole

moment of the object.

Even for the magnetometer, the measurement noise is as-
sumed to be white Gaussian noise according to

p(em,t) = N (em,t; 0, Cm) (16)

with

Cm =

σ2
m,x 0 0
0 σ2

m,y 0
0 0 σ2

m,z

 . (17)

Note that the amount of noise can vary between the different
components which is reflected in the individual σ2

m,x, σ2
m,y ,

and σ2
m,z , depending on the sensor configuration.

D. Complete Model

Summarizing the models introduced above, the following
general state-space model is obtained

xt+1 = Axt +Bvt (18a)

yt =

[
ha(xt)ut
hm(xt)

]
+

[
ea,t
em,t

]
(18b)

Theoretically, (18) could now be used for tracking directly
if all the parameters were known. However, closer inspection
shows two things. First, both measurement models depend
on unknown parameters. For the accelerometer, the material
parameters κ and η as well as the wheelbase l are unknown.
For the magnetometer, the magnetic moment m is unknown.
This yields the parameter vector

θ =
[
κ η l mT

]T
(19)

and θ is added as a parametrization to the measurement
functions, that is, ha(xt; θ) and hm(xt; θ).

Second, the structure of (18) makes it possible to split the
state vector into non-linear and linear states which will be
helpful when applying the particle smoothing algorithm. The
only states appearing in the non-linear measurement functions
are the positions rxt and ryt whereas ṙxt and ṙyt do not appear
in the measurement equations. Hence, the state vector can be
divided into linear and non-linear states as follows

xnt =

[
rxt
ryt

]
and xlt =

[
ṙxt
ṙyt

]
(20)

where the superscript n and l denote the non-linear and linear
state variables, respectively.

The model (18) can then be rewritten as

xnt+1 = Fnxnt +Anxlt +Bnvt (21a)

xlt+1 = Alxlt +Blvt (21b)

yt =

[
ha(xnt ; θ)ut
hm(xnt ; θ)

]
+

[
ea,t
em,t

]
(21c)
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where

Fn =

[
1 0
0 1

]
= I2,

An =

[
Ts 0
0 Ts

]
= TsI2,

Al =

[
1 0
0 1

]
= I2,

Bn =

[
T 2
s

2 0 0 0

0
T 2
s

2 0 0

]
=
[
T 2
s

2 I2 0
]

and
Bl =

[
0 0 Ts 0
0 0 0 Ts

]
=
[
0 TsI2

]
.

Finally, the model can be written in terms of probability
density functions. The state transition probability density is
given through the state dynamics (21a)-(21b) and is

p(xt+1|xt)

= N
([

xnt+1

xlt+1

]
;

[
Fn An

0 Al

] [
xnt
xlt

]
,

[
Bn

Bl

]
Q

[
Bn

Bl

]T)
.

(22a)
The likelihood is given through the measurement equa-
tions (21c). The measurement noises of the accelerometer and
magnetometer are assumed to be uncorrelated and hence, the
joint likelihood is the product of the individual likelihoods and
given by

p(yt|xt; θ) = p(ya,t|xt; θ)p(ym,t|xt; θ)
= N (ya,t; 0, ha(xt; θ)

2 + σ2
a)

×N (ym,t;hm(xt; θ), Cm).

(22b)

III. METHOD

Given the nonlinear estimation problem (21) introduced in
Section II, it will now be shown how the particle system
identficiation algorithm introduced in [23] can be applied to
this problem. As a result, both the state vector xt and the
unknown model parameters θ can be estimated. Note that the
algorithms introduced here are simply stated for completeness
but are described and derived in the respective references.

A. Particle System Identification

The system identification algorithm as proposed by [23] is
summarized in Algorithm 1. It uses sequential Monte Carlo
methods to obtain state estimates given candidate param-
eters θ̂k and then finds an improved estimate θ̂k+1 using
expectation-maximization (EM). Note that even though the
EM algorithm in general guarantees an increase in likelihood
for θ for each iteration, this is only asymptotically true when
using particle Monte Carlo methods (as the number of particles
goes to infinity), see [23] for details.

Algorithm 1 (Particle EM System Identification).
1) Set k ← 0 and choose a feasible starting point θ̂0.
2) Expectation step:

a) Run a particle smoother given a candidate θ̂k and
store the filtered particles x̃(n)

t|t and their weights

w
(n)
t|t and the smoothed particles x̃(m)

t|T and their

weights w(m)
t|T .

b) Estimate the expected log-likelihood

Q̂M (θ, θ̂k) = Ĵ1 + Ĵ2 + Ĵ3 (23)

3) Maximization step:

θ̂k+1 = argmax
θ

Q̂M (θ, θ̂k) (24)

4) If Q(θ̂k+1, θ̂k)−Q(θ̂k, θ̂k) > ε then set k ← k+ 1 and
return to step 2, otherwise terminate.

Step 2a) in Algorithm 1 requires to run a particle smoother
in order to obtain the n = 1, . . . ,MF filtered and m =
1, . . . ,MS smoothed particles and their weights. These can be
obtained from any particle smoothing algorithm, such as [25]
or [37]. Furthermore, the terms Ĵ1, Ĵ2, and Ĵ3 in (23) are
given by [23]

Ĵ1 =

MS∑
m=1

w
(m)
t|T log

(
p(x̃

(m)
1|T )

)
(25a)

Ĵ2 =

T−1∑
t=1

MF∑
m=1

MS∑
n=1

w
(m,n)
t|T log

(
p(x̃

(n)
t+1|T |x̃

(m)
t|t )

)
(25b)

Ĵ3 =

T∑
t=1

MS∑
m=1

w
(m)
t|T log

(
p(yt|x̃(m)

t|T ; θ)
)

(25c)

where

w
(m,n)
t|T =

w
(m)
t|t w

(n)
t+1|T p(x̃

(n)
t+1|T |x̃

(m)
t|t )∑MF

l=1 w
(l)
t|tp(x̃

(n)
t+1|T |x̃

(l)
t|t)

. (26)

Finally, Step 3) requires to maximize the expected log-
likelihood Q̂M to obtain an improved estimate θ̂k+1 of the
parameters θ. Steps 2a) and 3) are addressed more thoroughly
in the next sections.

B. State Smoothing

As indicated, Step 2a) in Algorithm 1 requires a parti-
cle smoother in order to compute an approximation of the
marginal smoothing density [37]. Since the model (21) is
a conditionally Gaussian linear state-space system, the joint
smoothing density can be written as

p(xl1:T , x
n
1:T |y1:T ) = p(xl1:T |xn1:T , y1:T )p(xn1:T |y1:T ) (27)

and only the nonlinear states have to be targeted by the particle
smoother. The linear states in turn can be computed condi-
tioned on the nonlinear states, for example using a Rauch-
Tung-Striebel smoother [38]. Hence, a Rao-Blackwellized
particle smoother only targeting the smoothing density

p(xn1:T |y1:T ) (28)

is required. This has the advantage that the dimension of
the states that are estimated using Monte Carlo methods is
reduced and hence, fewer particles are required. The marginal
smoothing density p(xt|y1:T ) required in Algorithm 1 is then
obtained by marginalizing the joint smoothing density as

p(xt|y1:T ) =

∫ ∞
−∞

p(x1:T |y1:T )dx1:t−1dxt+1:T . (29)
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A Rao-Blackwellized forward filtering backward simulation
(RB-FFBSi) smoothing algorithm targeting (28) and suitable
for this problem was introduced in [26]. Assume that one is
given an approximation of the partial backward state trajectory
x̃
n,(m)
t+1:T |T . Then, one would like to extend this trajectory to

time t by using the particles x̃n,(n)
t|t from a Rao-Blackwellized

particle filter (RB-PF). The RB-FFBSi algorithm is based on
calculating the smoothed particle weight

w
(n,m)
t|T ∝ w(n)

t|t Z
(n,m)
t

∣∣∣Λ(n,m)
t

∣∣∣−1/2

exp

(
−1

2
η

(n,m)
t

)
(30)

given that the m-th trajectory is extended using the n-th
particle. w(n)

t|t is the filtering weight for the n-th particle
obtained from the RB-PF. Equation (30) is obtained from the
Rao-Blackwellization of the smoothing density with respect to
the linear states, see [26] for the derivation. The expressions
for the quantities Z(n,m)

t , Λ
(n,m)
t , and η(n,m)

t are given in the
Appendix.

For each trajectory x̃
n,(m)
t+1:T |T (m = 1, . . . ,MS) that one

would like to extend to time t, one could now calculate the
weight (30) for each filter particle x̃

n,(n)
t|t (n = 1, . . . ,MF )

and then take a sample from the categorical distribution
C({w(n,m)

t|T }MF
n=1) in order to choose a sample for the extension.

However, this is highly inefficient, resulting in a smoother that
scales with O(T ·MS ·MF ). Instead, we chose to combine
the above Rao-Blackwellized smoothing strategy with the
rejection sampling based smoother proposed in [25] which
asymptotically (as MS →∞) scales with O(T ·MS). Further,
in order to avoid getting trapped inside the rejection sampling
phase of the smoother, we also implement adaptive stopping
as proposed in [39]. Finally, it is very important to point out
that the smoothed weight in (30) is only used for the rejection
sampling (Step 7f)) and categorical sampling (Step 8c)) stages
but not as the weights of the smoothed particles. This is due to
the backward-simulation strategy that creates samples that are
approximately distributed according to the smoothing density
with smoothed weights w(m)

t|T = 1/MS [15]. The final particle
smoothing algorithm is illustrated in Algorithm 2.

Algorithm 2 (Rao-Blackwellized Rejection Sampling Particle
Smoother with Adaptive Stopping).

1) Run a Rao-Blackwellized particle filter and store the
particles x̃

n,(n)
t|t , their weights w

(n)
t|t , the conditionally

linear states x̃l,(n)
t|t , and covariances P (n)

t|t
2) Set t← T
3) Sample j ∼ C({w(n)

T |T }
MF
n=1) and set x̃n,(m)

T |T = x̃
n,(j)
T |T

4) Initialize Ω̂
(m)
T and λ̂(m)

T according to (49)
5) Set t← t− 1
6) Set L← {1, ...,MS} and k ← 0
7) While L not empty and k < K, then, for each m ∈ L

a) Sample j ∼ C({w(n)
t|t }

MF
n=1)

b) Calculate Z
(j,m)
t , Ω

(j,m)
t , and λ

(j,m)
t according

to (45)-(47).
c) Calculate η(j,m)

t and Λ
(j,m)
t according to (50)

d) Calculate the non-normalized weight w̃(j,m)
t|T ac-

cording to (30)

e) Sample u ∼ U [0, 1]

f) If w̃(j,m)
t|T /(w

(j)
t|t ρ) ≥ u

i) Set x̃n,(m)
t|T = x̃

n,(j)
t|t and w(m)

t|T = 1/MS

ii) Update Ω̂
(m)
t and λ̂(m)

t using (48)
iii) Calculate the conditionally linear states and

their covariances

P
(m)
t|T =

(
(P

(j)
t|t )−1 + Ω

(m)
t

)−1

x̃
l,(m)
t|T = P

(m)
t|T

(
(P

(j)
t|t )−1x̃

l,(j)
t|t + λ

(m)
t

)
iv) Set L← L \m

g) Set k ← k + 1

8) If L is not empty, then, for each m ∈ L
a) For each n ∈ {1, . . . ,MF }

i) Calculate Z(n,m)
t , Ω

(n,m)
t , and λ(n,m)

t accord-
ing to (45)-(47).

ii) Calculate η(n,m)
t and Λ

(n,m)
t according to (50)

iii) Calculate the non-normalized weight w̃(n,m)
t|T

according to (30)
b) Normalize the smoothed weights

w
(n,m)
t|T =

w̃
(n,m)
t|T

ΣMF
n=1w̃

(n,m)
t|T

c) Draw j ∼ C({w(n,m)
t|T }MF

n=1)

d) Set x̃n,(m)
t|T = x̃

n,(j)
t|t , w(m)

t|T = 1/MS , Ω
(m)
t =

Ω
(j,m)
t , and λ(m)

t = λ
(j,m)
t

e) Update Ω̂
(m)
t and λ̂(m)

t using (48)
f) Calculate the conditionally linear states and their

covariances

P
(m)
t|T =

(
(P

(j)
t|t )−1 + Ω

(m)
t

)−1

x̃
l,(m)
t|T = P

(m)
t|T

(
(P

(j)
t|t )−1x̃

l,(j)
t|t + λ

(m)
t

)
9) Return to step 3 if t > 1, terminate otherwise

Note that in Algorithm 2, ρ is the upper bound for the non-
normalized particle weight, such that

w̃
(j,m)
t|T

w
(j)
t|t

< ρ.

The RB-PF used in Step 1) in Algorithm 2 is shown in
Alogirthm 3. It is based on model 4 and Algorithm 1 in [24].
By using the model structure (21) it can be greatly simplified
and the shown algorithm is obtained.

Algorithm 3 (Rao-Blackwellized SIR Particle Filter).
1) Set t← 1 and initialize

• the nonlinear states as x̃
n,(m)
1|1 ∼ p(xn1 ) and the

particle weights as w(m)
0|0 = 1/MF ,

• the prediction of the linear states as x̃l,(m)
1|1 = µxl

1
,

• the predicted covariance of the linear states as
P1|1 = Cxl

1

for m = 1, . . . ,MF .
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2) Calculate the importance weight

w̃(m) = w
(m)
t−1|t−1p(yt|x̃

(m)
t|t ) (31)

3) Normalize the importance weights

w
(m)
t|t =

w̃(m)∑MF

m=1 w̃
m
. (32)

4) If
(∑MF

i=1(w
(m)
t|t )2

)−1

≤ MT resample with replace-
ment such that

P (xt = x̃
(m)
t|t ) = w

(m)
t|t

and set w(m)
t|t = 1/MF .

5) Jitter the particles

x̄
(m)
t|t = x̃

(m)
t|t + c

with

c ∼ N (0,Σ)

according to (36).
6) Predict MF new particles for the non-linear states

x̃
n,(m)
t+1|t ∼ p(xnt+1|x̄n,(m)

t|t , x̃
l,(m)
t|t ) (33)

7) Calculate the linear states given x̃
n,(m)
t+1|t using the

Kalman filter prediction

x̃
l,(m)
t+1|t+1 =Ālx̃

l,(m)
t|t + (Qnl)T (Q̄n)−1z

+ L(z −Anxl,(m)
t|t )

(34)

and
Pt+1|t+1 = ĀlPt|t(Ā

l)T − LNL> (35)

where

Q̄n = Qn + Σ

Āl = Al − (Qnl)T (Q̄n)−1An

Q̄l = Ql − (Qnl)T (Q̄n)−1Qnl

z(m) = x̃
n,(m)
t+1|t − Fnx̃

n,(m)
t|t

and

N = AnPt|t(A
n)T + Q̄n

L = ĀlPt|t(A
n)−1N−1.

8) Set t ← t + 1. If t < T return to step 2, otherwise
terminate.

It is worth to point out that by jittering the particles in Step
5 in Algorithm 3, we mitigate sample impoverishment [27].
The diagonal jittering covariance matrix Σ is chosen such that
the i-th entry on the diagonal is

[Σ]i =
(
KEiM

−1/N
F

)2

(36)

and all the off-diagonal entries are zero. In (36) N is the
state dimension, Ei is the distance between the largest and the
smallest value of the particles for the i-th state, and K is a user
chosen constant controlling the amount of jitter. Since we use

a Rao-Blackwellized particle filter, the jittering is only applied
to the nonlinear states. This has to be taken into account when
updating the linear states in Step 6 as follows. Instead of
using the transition density (22b), the covariance matrix of
the nonlinear states Qnt becomes

Qnt = BnQ(Bn)T + Σ. (37)

Furthermore, the linear states are completely given by (34)
since they do not enter the measurement equation. Also, since
neither the noise covariance nor the system matrices (An, Al)
depend on the nonlinear states xnt , there is only one covariance
matrix Pt|t (but there still is a complete set of MF linear state
vectors x̃l,(m)

t|t ).

C. Parameter Estimation

The estimate for the parameters θ is updated in Step
3 in Algorithm 1. This involves maximizing the expected
log-likelihood Q̂M (θ, θ̂k) with respect to θ. First, note that
neither (25a) nor (25b) depend on θ and hence, maximizing
Q̂M (θ, θ̂k) is equivalent to maximizing Ĵ3. Also, since a
backward simulation particle smoother was used, all particle
weights are w(m)

t|T = 1/MS . Finally, note that ya,t and ym,t
are independent, see (22b).

Then, the stationary points of Q̂M are found by setting the
derivative equal to zero

∂Q̂M
∂θ

=
∂Ĵ3

∂θ

=
1

MS

T∑
t=1

M∑
m=1

∂ log
(
p(yt|x̃(m)

t|T ; θ)
)

∂θ

=
1

MS

T∑
t=1

M∑
m=1

∂ log
(
p(ya,t|x̃(m)

t|T ; θ)
)

∂θ

+
∂ log

(
p(ym,t|x̃(m)

t|T ; θ)
)

∂θ


= 0

(38)

where it was made use of the fact that Ĵ1 and Ĵ2 are
independent of θ in the first equality.

1) Accelerometer: The parameters κ, η, and l enter the
problem through the measurement equation for ya,t. Hence,
the derivative with respect to these parameters is zero for
p(ym,t|x̃(m)

t|T ; θ). For the accelerometer log-likelihood, we have
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that

∂ log
(
p(ya,t|x̃(m)

t|T ; θ)
)

∂θj

=
∂ log

(
N (ya,t; 0, ha(x̃

(m)
t|T ; θ)2 + σ2

a)
)

∂θj

=
∂

∂θj

(
−1

2
log(2π)− 1

2
log(ha(x̃

(m)
t|T ; θ)2 + σ2

a)

− y2
a,t

2(ha(x̃
(m)
t|T ; θ)2 + σ2

a)


= −

ha(x̃
(m)
t|T ; θ)

(ha(x̃
(m)
t|T ; θ)2 + σ2

a)2

(
ha(x̃

(m)
t|T ; θ)2 + σ2

A − y2
a,t

)

×
∂ha(x̃

(m)
t|T ; θ)

∂θj
(39)

which gives for ∂Ĵ3/∂θj

∂Ĵ3

∂θj
= − 1

MS

T∑
t=1

M∑
m=1

ha(x̃
(m)
t|T ; θ)

(ha(x̃
(m)
t|T ; θ)2 + σ2

a)2

×
(
ha(x̃

(m)
t|T ; θ)2 + σ2

A − y2
a,t

) ∂ha(x̃
(m)
t|T ; θ)

∂θj
(40)

The measurement function ha(x̃
(m)
t|T ; θ) is defined in (12)

and it is apparent that (40) does not exhibit a closed form
solution for any of κ, η, or l. Hence, numerical methods have
to be employed in this case. To this end, the Newton-Raphson
method is used in this paper.

2) Magnetometer: The magnetic moment m only appears
in the measurement equation of ym,t. First, note that the mean
of p(ym,t|x̃(m)

t|T ; θ) can be rewritten as

hm(x̃
(m)
t|T ; θ) =

3(rtr
T
t )− |rt|2I3
|rt|5︸ ︷︷ ︸

,Hm(x̃
(m)

t|T )

m (41)

where I3 is the 3 × 3 identity matrix. Equation (41) shows
that the model is linear in m and hence, the derivative of the
log-likelihood with respect to m is [40]

∂ log
(
p(ym,t|x̃(m)

t|T ; θ)
)

∂m
=Hm(x̃

(m)
t|T )TC−1

m Hm(x̃
(m)
t|T )m

−Hm(x̃
(m)
t|T )TC−1

m ym,t
(42)

and the derivative of Ĵ3 with respect to m becomes

∂Ĵ3

∂m
=

1

MS

T∑
t=1

M∑
m=1

(
Hm(x̃

(m)
t|T )TC−1

m Hm(x̃
(m)
t|T )m

−Hm(x̃
(m)
t|T )TC−1

m ym,t

)
=

1

MS

T∑
t=1

M∑
m=1

Hm(x̃
(m)
t|T )TC−1

m Hm(x̃
(m)
t|T )m

− 1

MS

T∑
t=1

M∑
m=1

Hm(x̃
(m)
t|T )TC−1

m ym,t

(43)

Setting (43) to zero leads to the closed form estimator for
m given by

m̂ =

(
T∑
t=1

M∑
m=1

Hm(x̃
(m)
t|T )TC−1

m Hm(x̃
(m)
t|T )

)−1

×
(

T∑
t=1

M∑
m=1

Hm(x̃
(m)
t|T )TC−1

m ym,t

)
.

(44)

IV. SIMULATIONS

In order to verify the proposed method under controlled
conditions and to understand the limitations, it is simulated
first.

A. Setup

The simulation setup is as follows. A car passing the sensor
starting at

x1 =
[
−5 2.5 20 0.2

]T
with process noise covariance

Q =


5 0 0 0
0 0.1 0 0
0 0 5 0
0 0 0 0.1


is simulated. The parameters of the measurement equations
are chosen as

m =
[
2 −2 2

]T
,

κ = 10,

η = 2,

and
l = 2.7 m.

The measurement noise (co-)variances were chosen as

Cm = 5× 10−5I3

and
σ2
a = 1× 10−5.

In total, T = 1,000 samples are simulated which corre-
sponds to a complete passage of the car. The measurement
signals generated by this setup are shown in Fig. 2. Fig. 2a
shows the signals for the magnetometer and Fig. 2b depicts
the vibrations.



8

0 200 400 600 800 1,000

−0.2

0

t

y m
,t

yx
m,t

yy
m,t

yz
m,t

(a)

0 200 400 600 800 1,000

−5

0

5

×10−2

t

y a
,t

(b)

Fig. 2. Simulated measurement signals. (a) Magnetometer signals and (b)
accelerometer signal.

For the particle smoother, the mean and covariance of the
initial distribution p(x1) are chosen as

µx1
=
[
−6 2 25 0

]T
and

Cx1 =


20 0 0 0
0 1 0 0
0 0 100 0
0 0 0 1

 .
MF = 1,000 and MS = 100 particles were used in the

particle filter and smoother, respectively. This is expected to
yield good performance at a reasonable computing cost. The
initial value for the parameters θ0 is chosen randomly within
±25 % of the true parameter value. Finally, a total of 20 Monte
Carlo simulations were run in order to verify the statistical
properties.

We also compare the proposed solution to the same expec-
tation maximization approach but where the joint smoothing
density is approximated as a multivariate Gaussian distribu-
tion by using an unscented Rauch-Tung-Striebel smoother
(URTSS) as introduced in [28] and [29]. This is to see whether
the computationally more intense method of using the particle
smoother yields better estimates than the approximation using
the URTSS. This comparison is chosen since it allows for
easily comparing the results of the two methods.

B. Results

1) States: The mean position estimation errors (solid) to-
gether with the 2σ-bounds (dashed) of the 20 simulations are
shown in Fig. 3 for the longitudinal (rxt , top) and lateral (ryt ,
bottom) positions, respectively. Both errors converge quickly
to zero and the confidence interval narrows as more and more
data is obtained. However, the bounds increase again towards
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0.5

1
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E
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x t|T
−

rx t
}

(a)
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−0.5

0

0.5

1

t

E
{r̂

y t|T
−
ry t
}

(b)

Fig. 3. Mean state estimation error of the 20 MC simulations (solid) and
2σ-bounds (dashed) for (a) x-position and (b) y-position.
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Fig. 4. Mean state estimation error of the 20 MC simulations (solid) and
2σ-bounds (dashed) for (a) x-speed and (b) y-speed.

the end of the passage. This is especially pronounced for
the lateral position which enters the measurement equation
as |rt| =

√
(rxt )2 + (ryt )2 and once |rxt | � |ryt | we have that

|rt| ≈ |rxt |.
Fig. 4 shows the mean estimation error (solid) for the longi-

tudinal (ṙxt , top) and lateral (ṙyt , bottom) speeds. Again, the 2σ-
bounds are included (dashed). Since the speeds correspond to
the unmeasured, linear states and are calculated conditioned on
the nonlinear states (the vehicle position) these also converge
quickly as the position error converges to zero.
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TABLE I
TRUE AND MEAN OF THE ESTIMATED PARAMETER VALUES TOGETHER

WITH THEIR STANDARD DEVIATIONS IN PARENTHESES FOR THE
PROPOSED PARTICLE SMOOTHER (PS) AND THE UNSCENTED

RAUCH-TUNG-STRIEBEL SMOOTHER (URTSS).

Parameter True θ PS URTSS

m

 2
−2
2

  2
−2.03
1.98

 0.250.27
0.29

  1.99
−2.05
1.93

  0.3
0.29
0.31


κ 10 10.78 (1.97) 10.32 (1.44)
η 2 2.05 (0.24) 2.02 (0.26)
l 2.7 2.97 (0.47) 2.75 (0.4)

2) Parameters: The mean of the estimated parameters
together with their standard deviations are shown in Table I. It
can be seen that unbiased estimations with fairly low variance
are obtained for the magnetic moment m. However, it appears
that the parameters related to the accelerometer measurement
are more difficult to estimate, probably due to the randomness
of the signal. The wheelbase l is biased and the estimate for
κ exhibits a relatively large standard deviation.

3) Comparison: The results of the comparison between the
particle smoother approximation and the unscented Rauch-
Tung-Striebel smoother (URTSS) are shown in Table I and
Fig. 5. As it can be seen from the table, the parameters
estimated by using the URTSS are almost equally good, both
in terms of biasedness and standard deviation.

In Fig. 5, the root mean squared error (RMSE) of the pos-
tion estimate

√
(r̂xt − rxt )2 + (r̂yt − ryt )2 and speed estimate√

(ˆ̇rxt − ṙxt )2 + (ˆ̇ryt − ṙyt )2 are shown. It can be seen that
the estimation using the particle smoother achieves a lower
RMSE for both, the position as well as the speed estimate.
The difference, however, is not too big.

C. Discussion

The simulations indicate that the method is feasible. Good
tracking performance was achieved with fast convergence and
unbiased position and speed estimates while the target is in
front of the sensor.

Regarding the estimation of the unknown parameters in
the measurement equations, two conclusions can be drawn.
First, the parameters associated with the magnetometer (m)
can be estimated bias-free and with high accuracy. Second,
the material parameters affecting wave propagation (κ and
η) and the wheelbase (l) are less precise. The less accurate
material parameters as such are not a serious issue since these
parameters are of secondary nature. However, the bias in l is
an issue since it is important in traffic monitoring applications.

Finally, the comparison of the proposed particle smoother
to the unscented Rauch-Tung-Striebel smoother showed that
the particle-based method achieves a lower root mean squared
error for both, the position as well as the speed estimate.
The difference between the two is not too big and thus, if
the extra accuracy is not needed, an unscented Rauch-Tung-
Striebel smoother might be sufficient.
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Fig. 5. Comparison of using the proposed particle smoother (PS; solid) and an
unscented Rauch-Tung-Striebel smoother (URTSS; dashed) for approximating
the joint smoothing density. RMSE for (a) position and (b) speed.

V. RESULTS

The simulations in Section IV showed that the proposed
method is feasible. In order to test the applicability in practice,
it was also applied to real measurement data.

A. Measurement Setup

The measurements were conducted on an arterial road
(speed limit 90 km/h) connecting Luleå city to European route
E4 during daytime on a spring day. The measurement setup
consisted of an accelerometer, a Brüel & Kjær type 4524 [41],
firmly mounted to the road surface at the side of the road. As
for the magnetometer, a combination of a 2-axis Honeywell
HMC6042 (x- and y-axes) [42] and a Honeywell HMC1051
(z-axis) [43] with an evaluation board was used. A second
sensor combination was installed with a separation of 1 m as
a secondary measurement. All sensors were connected to a
data recorder where the measurement signals were sampled
at fs = 16,384 Hz. Finally, the measured signals were down-
sampled to fs = 2,048 Hz and offsets and drift were removed
before processing. A total of 50 minutes of measurement data
was acquired using this measurement setup.

An example of the measured signals for a passenger car
passing the sensor is depicted in Fig. 6. It can be seen
that both the measured magnetic disturbance as well as the
measured vibration can be compared to the simulated scenario
in Section IV. However, the attenuation of the vibrations seems
to be less which results in a broader pulse (see Fig. 2b and
Fig. 6b).

B. Results

1) States: Fig. 7 shows the average position estimate for
both the longitudinal (x) and lateral (y) positions. The x-
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Fig. 6. Real measurement signals for the illustrated case. (a) Magnetometer
and (b) accelerometer.
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Fig. 7. Mean state estimation (solid) and 2σ bounds (dashed) for (a)
longitudinal position and (b) lateral position.

position follows a relatively smooth trend starting around
−3 m and ending around 3 m with a slight variation around
t = 500 (Fig. 7a). The y-position on the other hand starts
around 4 m and decreases to about 2 m (Fig. 7b). Furthermore,
a similar smooth variation is observed for the longitudinal
position. In practice, this means that the vehicle actually
approaches the side of the road during the passage.

The mean estimated lateral and longitudinal speeds are
shown in Fig. 8. It can be observed that both speeds are
estimated to be approximately constant. The x-speed is around
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Fig. 8. Mean state estimation (solid) and 2σ bounds (dashed) for (a)
longitudinal speed and (b) lateral speed.

12 m/s which significantly deviates from the reference speed
of 20.8 m/s (estimated using cross-correlation of the second
sensor pair). However, it corresponds well to the total dis-
tance covered in x-direction during the passage (see Fig. 7a).
Furthermore, the y-speed lies around −1 m/s which again
corresponds to the vehicle slightly moving towards the road
side.

2) Parameters: The estimated parameters for the illustrated
case are as follows. The magnetic moment was estimated to
be

m̂ =

 3.72
−0.93
1.24

 .
For the accelerometer, the material parameters were esti-

mated to be
κ̂ = 0.83

and
η̂ = 1.77

Furthermore, the wheelbase was estimated to be

l̂ = 2.54.

C. Discussion

For the estimated vehicle trajectory, the results presented
seem reasonable but biased. Both the estimated position
and speed seem to underestimate the actual motion of the
vehicle as suggested by the reference measurement using
the secondary sensor. Furthermore, the rather large variation
in the position estimate (Fig. 7) around t = 500 seems
unreasonable. This suggest that there are other effects affecting
the state estimates. A reason could be undermodeling of the
measurements which leads to unexplained data which in turn
is absorbed into the state estimate.
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Furthermore, the lateral motion of the vehicle is probably
not very accurate. Considering that the road imposes large
constraints on the possible motion of the vehicle, the motion
model could probably be simplified in order to obtain a better
estimation, for example by assuming longitudinal motion only
and considering the lateral position as a fixed parameter
instead.

It is difficult to conclusively discuss the estimated param-
eters since there are no true reference values available for
comparison. The results for these seem reasonable with the
magnetic moment in the range one would expect it (see,
for example [10]) and the wheelbase around the average
for passenger cars. These results should be verified more
thoroughly in the future.

VI. CONCLUSIONS

In this article, it was shown how particle system identifica-
tion consisting of a Rao-Blackwellized particle smoother using
a low number of particles and the expectation maximization
algorithm can be applied for estimating the vehicle trajectory
as well as unknown, static parameters.

The simulation results showed that the method is feasible
and good results for both, the trajectory as well as the
parameters can be obtained. Applied to real measurement data
the performance degraded, probably due to model uncertainties
and the range of the true parameters that complicate the
problem.

Clearly, due to the iterative nature of the algorithm, the
method is not feasible for real-time applications. However,
in practice it could be used to auto-tune a traffic monitoring
system to initially determine the unknown parameters and
then a conventional (Rao-Blackwellized) particle filter could
be used for subsequent tracking applications.

APPENDIX

The statisitcs required for calculating the smoothed particle
weight and backward propagation in (30) and Algorithm 2
stem from the Rao-Blackwellization. Their derivation can be
found in [26] and the resulting expressions for these quantities
are given below. For brevity, xTCx is written as ‖x‖C , fnt ,
fn(xnt ), and analogously for Ant , f lt , and Alt. Furthermore,
Qnt , Cov{xnt , xnt } is the covariance of the nonlinear states,
Qlt , Cov{xlt, xlt}, and Qnlt , Cov{xnt , xlt}.

A. Backward Prediction

The statistics Zt, Ωt, and λt are given by

Zt = |Mt|−1/2 |Qnt |−1/2
exp

(
−1

2
τt

)
, (45a)

Ωt =(Ālt)
T (Ω̂t+1 − Ω̂t+1Γ̄M−1

t Γ̄T Ω̂t+1)Ālt

+ (Ant )T (Qnt )−1Ant ,
(45b)

λt =(Ālt)
T (INl

− Ω̂t+1Γ̄M−1
t Γ̄T )mt

+ (Ant )T (Qnt )−1(x̃t+1 − fnt ).
(45c)

where

mt = λ̂t+1 − Ω̂t+1f̄
l
t (46a)

Mt = Γ̄T Ω̂t+1Γ̄ + INn
, (46b)

τt =
∥∥x̃nt+1 − fnt

∥∥
(Qn

t )−1 +
∥∥f̄ lt∥∥Ω̂t+1

− 2
(
λ̂t+1

)T
f̄ lt −

∥∥Γ̄Tmt

∥∥
M−1

t
,

(46c)

and Γ̄ is the Cholesky decomposition (lower triangular) of Q̄lt
such that Q̄lt = Γ̄T Γ̄. Ālt, f̄

l
t , and Q̄lt are given through the

decorrelation of the linear- and nonlinear state dynamics as

f̄ lt = f lt − (Qnlt )T (Qnt )−1(xnt+1 − fnt ), (47a)

Ālt = Alt − (Qnlt )T (Qnt )−1Ant , (47b)

Q̄lt = Qlt − (Qnlt )T (Qnt )−1Qnlt . (47c)

B. Backward Update

The statistics Ω̂t and λ̂t are updated using the new mea-
surements as well as the predicted statistics as

Ω̂t = Ωt + CTt R
−1
t Ct (48a)

λ̂t = λt + CTt R
−1
t (yt − ht). (48b)

At time T , they are initialized according to

Ω̂T = CTT R
−1
T CT (49a)

λ̂T = CTT R
−1
T (yT − hT ). (49b)

C. Particle Weight

The quantities for calculating the non-normalized particle
weight (30) are given by

Λt = (Γt|t)
TΩtΓt|t + INl

, (50a)

ηt =
∥∥∥x̃lt|t∥∥∥

Ωt

− 2λtx̃
l
t|t −

∥∥∥(Γt|t)
T (λt − Ωtx̃

l
t|t)
∥∥∥

Λt

(50b)

where Γt|t is the Cholesky decomposition (lower triangular)
of Pt|t such that Pt|t = (Γt|t)TΓt|t.

REFERENCES

[1] R. Hostettler, W. Birk, and M. Lundberg Nordenvaad, “Joint vehicle
trajectory and model parameter estimation using road side sensors,”
Sensors Journal, IEEE, vol. 15, no. 9, pp. 5075–5086, Sept 2015.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation: Theory, Algorithms and Software.
John Wiley & Sons, 2004.

[3] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking:
Part I. Dynamic models,” Aerospace and Electronic Systems, IEEE
Transactions on, vol. 39, no. 4, pp. 1333–1364, 2003.

[4] ——, “Survey of maneuvering target tracking: Part III. Measurement
models,” Proc. SPIE, vol. 4473, pp. 423–446, 2001.

[5] J. Altmann, “Acoustic and seismic signals of heavy military vehicles for
co-operative verification,” Journal of Sound and Vibration, vol. 273, no.
4-5, pp. 713–740, June 2004.

[6] R. Hostettler, W. Birk, and M. Lundberg Nordenvaad, “Extended Kalman
filter for vehicle tracking using road surface vibration measurements,”
in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
Maui, HI, USA, December 2012, pp. 5643–5648.



12

[7] W. M. Wynn, “Detection, localization, and characterization of static
magnetic dipole sources,” in Detection and Identification of Visually
Obscured Targets. Taylor and Francis, 1999, pp. 337–374.

[8] M. Rakijas, A. Saglembeni, K. K. Kohnen, and H. C. Gilbert, “Mag-
netic object tracking based on direct observation of magnetic sensor
measurements,” US Patent 6 269 324, July 31, 2001.

[9] M. Birsan, “Non-linear Kalman filters for tracking a magnetic dipole,”
Defence R&D Canada, Dartmouth, NS, Canada, Tech. Rep. DRDC-
ATLANTIC-TM-2003-230, December 2003.

[10] N. Wahlström and F. Gustafsson, “Magnetometer modeling and valida-
tion for tracking metallic targets,” Signal Processing, IEEE Transactions
on, vol. 62, no. 3, pp. 545–556, February 2014.

[11] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Roning, “Magnetic
field-based slam method for solving the localization problem in mobile
robot floor-cleaning task,” in Advanced Robotics (ICAR), 2011 15th
International Conference on, June 2011, pp. 198–203.

[12] M. Frassl, M. Angermann, M. Lichtenstern, P. Robertson, B. J. Julian,
and M. Doniec, “Magnetic maps of indoor environments for precise
localization of legged and non-legged locomotion,” in Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on,
November 2013, pp. 913–920.

[13] P. Robertson, M. Frassl, M. Angermann, M. Doniec, B. J. Julian,
M. Garcia Puyol, M. Khider, M. Lichtenstern, and L. Bruno, “Simul-
taneous localization and mapping for pedestrians using distortions of
the local magnetic field intensity in large indoor environments,” in
Indoor Positioning and Indoor Navigation (IPIN), 2013 International
Conference on, October 2013, pp. 1–10.

[14] M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson, “Mems-based
inertial navigation based on a magnetic field map,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on, May 2013, pp. 6466–6470.
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