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Abstract: In this paper, modeling of the pavement as a wave propagation medium and
estimation of the corresponding model parameters is approached from a system identification
perspective. A model based on the physical background is proposed and the corresponding
parameters are then estimated from measurement data. In order to achieve the latter, two
estimators are proposed, their performance evaluated, and then applied to the measurement
data. It is found that the proposed methods are applicable and the results show that different
eigenmodes of the structure are excited.
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1. INTRODUCTION

Recent development of new methods for traffic counting
showed that it is possible to measure and process waves
on the road surface originating from vehicles in order to
estimate vehicle and traffic parameters (Hostettler et al.,
2010; Bajwa et al., 2011). Even though the feasibility was
shown, little is known about the exploited phenomenon. To
take this approach further, it is thus of vital importance
to understand the physical background. As a first step in
this process, it is therefore of interest to understand how
the waves propagate in the pavement.

The analysis of wave propagation in pavements is also used
in non-destructive testing (NDT) of pavement structures.
These methods normally aim at backcalculating pavement
parameters, for example for wear prediction and mainte-
nance. Different approaches are in use to date (Goktepe
et al., 2006; Goel and Das, 2006) and, for example, Ryden
et al. (2004) have pushed the field forward in recent years.
Looking at the problem, it is easy to understand that this
can be seen as a typical application of system identifica-
tion. Thus, it is the objective of this paper to examine it
as a such. The novelty is that the problem is put into a
statistical framework and good properties of the estimated
parameters in this sense are sought.

This paper is organized as follows. First, a short recap
of wave propagation theory in the road is given in Sec-
tion 2 and the physical model chosen is explained. This
is followed by the description of the system identification
experiments and signal analysis in Section 3. Then, two
estimators, one for the attenuation coefficients and one
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for the phase velocity together with their evaluation are
proposed in Section 4. Finally, the evaluation of applying
the developed tools to the measurement data is given in
Section 5.

2. WAVE PROPAGATION

In general, wave propagation in solid (and fluid) media
can pose all kind of problems ranging from trivial to very
difficult. The level of complexity depends heavily on the
mechanical structure in which the waves propagate. For
a road that is composed of a layered subgrade with an
asphalt concrete plate on top (Figure 1), this becomes
a problem of waves in a supported plate. These kind of
waves have been studied to some extent and the most
fundamental work was done by Lamb (1917) who laid
the fundamentals for Lamb wave theory. An extensive
coverage of the theory is beyond the scope of this paper,
thus only the most important principles are captured here.
The interested reader is referred to, for example, the work
by Rose (1999).

Lamb waves can be seen as the product of waves reflected
at the plate boundaries. The original waves induced are
reflected at the top and bottom of the plate multiple times
and due to the superposition new wave modes emerge. The
resulting modes can be divided into three main categories:
Symmetric (S), antisymmetric (A), and shear-horizontal
(SH) modes. An infinite number of these modes exists.
The S- and A-modes have their particle motion mostly
in the out-of-plane and radial in-plane directions whereas
SH-modes have their particle motion in the tangential in-
plane direction.

One of the most important properties for characterizing
waves is the phase velocity. It generally is a function of
frequency (dispersive waves) and can by calculated by
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Fig. 1. Illustration of a typical road cross-section consisting
of an asphalt concrete plate on top and one or more
subgrade layers.

using the Lamb wave dispersion relation (Rose, 1999) if
the material parameters are known. The phase shift added
for a wave traveling the distance r can be described as

ϕr = − ωr

cp(ω)
. (1)

Adding the phase shift ϕ0 between the excitation and
measurement (e.g. phase between force and acceleration),
the phase angle becomes

6 H(r, iω) = ϕ0 −
ωr

cp(ω)
(2)

where H(r, iω) is the distance-dependent transfer function
describing the wave propagation.

Furthermore, Lamb waves in pavements are also subject
to damping when propagating away from the source. Us-
ing the asymptotic approximation of the Hankel function
that is obtained from the solution of classical plate the-
ory (Doyle, 1997), the magnitude is obtained as

|H(r, iω)| = A(ω)√
r
e−β(ω)r. (3)

Combining (2) and (3), the model for the propagation path
becomes

H(r, iω) =
A√
r
e−βre

i
(
ϕ0−ωrcp

)
(4)

where the dependency of A, β, and cp on ω has been
dropped for brevity.

3. EXPERIMENTS

In order to use the theory introduced in the previous
section and to estimate the model parameters, system
identification experiments on the road were conducted.
This section describes the experimental setup used to
gather the necessary data and provides a first analysis
of the data. The parameter estimation is discussed in
Section 4.

3.1 Experiment Setup

The experiment setup used is illustrated in Figure 2. The
pavement was excited using a sledge hammer and the
response was measured with an accelerometer. The exci-
tation force (input) was measured with a force transducer
mounted on the sledge hammer. The distance between
the excitation (hammer impact point) and the sensor was
varied in 0.5m-steps from 0.5m up to 6m yielding M = 12
spatially separated measurement points. At each distance,

the experiment was repeated K = 10 times. Note that
once the experiment is set up, the time to conduct the
measurements is given by K ·M . For a fixed experiment
time, this results in a trade-off between spatial information
which contributes to the accuracy of the parameters of
interest and averaging of the individual transfer functions
as it will be shown in the following sections.

The excitation produced by the hammer is a rather sharp
pulse. Clearly, this is not an ideal excitation for the pur-
pose of system identification as the amplitude and fre-
quency content cannot be controlled very well. However,
using more structured excitation signals such as multi-
sines (Pintelon and Schoukens, 2001) is more difficult.
For this purpose, shakers attached to the ground could
be used (see, e.g. Goel and Das (2006)). Two obvious
challenges with that are the transmission of the force into
the structure and the limited dynamics of the shaker.

Furthermore, note that the excitation is mostly normal to
the surface and thus, the response measured in the same
orientation will carry the most information.

3.2 Input and Output Signal Analysis

The force created by the hammer exceeds several kN and
thus, a lot of energy is injected to excite the pavement.
The output y(d)[n] (the superscript (d) denotes the mea-
surement direction x, y, or z) on the other hand is a rather
weak acceleration and the following measurement model is
assumed

x[n] = u[n]

y(d)[n] = h0[n] ∗ u[n] + w[n]
(5)

where u[n] is the excitation signal, h0[n] the true impulse
response, w[n] ∼ N (0, σ2

w), and ∗ denotes the convolution.

The measured signals are then transformed to the fre-
quency domain to perform further analysis. The uni-
tary Fast Fourier Transform (scaling 1/

√
N) is used to

obtain the Fourier coefficients and the first order diff -
window (Schoukens et al., 2006)

Xk,rm(iωl+0.5) = Xk,rm(iωl+1)−Xk,rm(iωl) (6)

is applied to reduce leakage for both the input and out-
put signals. Note that the index l is omitted for better
readability.

Figure 3 shows an example of the input and output
signal amplitude spectra for r = 2m. It can be seen that
the input’s half-power bandwidth (blue) is approximately
330Hz and at 800Hz it has decayed by more than 20dB on
average.

The output spectra show that mainly two frequency ranges
are excited. The first between approximately 300Hz and
1kHz and the second around 4kHz to 5kHz. Comparing
that to the excitation, one can see that both of these two
regions are weakly excited. Thus, it can be concluded that
new modes were excited.

When comparing the amplitude of the different orienta-
tions of the sensor (direction of particle motion), it is
observed that the out-of-plane motion (z) is predominant,
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Fig. 2. Illustration of the experiment setup showing the excitation (hammer) and the sensor location together with the
coordinate system used.
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Fig. 3. Examples of measured input- (top) and output
(bottom) specta for r = 2m.

followed by the radial in-plane motion (x) and the tangen-
tial in-plane motion (y).

3.3 Non-Parametric Transfer Function

For each of the K = 10 input-output pairs at distance rm,
the individual transfer function

Ĥk(rm, iω) =
Yk,rm(iω)

Xk,rm(iω)
= H0(rm, iω) +

W (iω)

Xk,rm(iω)
(7)

is estimated. For simplicity, we assume that W (iω) is
Gaussian distributed according to W (iω) ∼ CN (0, 2σ2

wI)
(Kay, 1993). Due to the windowing in (6), this is not ex-
actly true. However, for all practical purposes the assump-
tion is accurate enough. For W̃ (iω) = W (iω)/Xk,rm(iω),

the noise becomes W̃ (iω) ∼ CN (0,CW̃k
) with the ele-

ments of the covariance matrix CW̃k
as

[
CW̃k

]
pq

=

{
2σ2

w(Xk,rm(iωp)X
∗
k,rm(iωq))

−1 p = q

0 p 6= q
(8)

and thus Ĥk(rm, iω) ∼ CN
(
H0(rm, iω),CW̃k

)
.

For each distance rm, the final transfer function estimate
is the weighted average over all realizations, i.e.

Ĥ(rm, iω) =

(
K∑
k=1

C−1
W̃k

)−1( K∑
k=1

C−1
W̃k
Ĥk(rm, iω)

)
(9)
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Fig. 4. Magnitude (top; solid), phase (bottom), and vari-
ance (top; dotted) of the transfer function obtained
from the experimental data for r = 2m.

and the covariance is

CĤ = cov
(
Ĥ(rm, iω)

)
=

(
K∑
k=1

C−1
W̃k

)−1
. (10)

An example of a transfer function calculated according
to (9) and its variance (10) is shown in Figure 4.

4. PARAMETER ESTIMATION

Based on the model introduced in Section 2 and the
measurements model in Section 3, two estimators, one for
the attenuation coefficients and one for the phase velocity,
are proposed and evaluated in this section.

4.1 Attenuation Coefficients

Assuming the model in (7), it is known (Papoulis, 1984)

that the magnitude zm = |Ĥ(rm, iωl)| is distributed
according to the Rice distribution

p(zm;θ) =
2zm
σ2
m

e
− 1

σ2m
(z2m+z20,m(θ))

I0

(
2z0,m(θ)zm

σ2
m

)
(11)

where I0(x) is the modified Bessel function, θ = [A β]
T

the

parameter vector, and z0(θ) = A√
r
e−βr according to (3).

The variance σ2
m is given by

[
CĤ

]
ll

for CĤ as in (10).



The log-likelihood function for z = [z1 z2 . . . zM ]
T

is then
given by

ln(p(z;θ)) =

M∑
m=1

ln

(
2

σ2
m

)
+ ln

(
I0

(
2z0,m(θ)zm

σ2
m

))
+ ln(zm)− 1

σ2
m

(
z2m + z20,m(θ)

)
.

(12)

Note that the arguments to the Bessel function are gen-
erally large in this case and thus, the asymptotic approxi-
mation of first order

I0(x) ≈ 1√
2πx

ex (13)

can be used (Abramowitz and Stegun, 1964) instead. The
approximated log-likelihood function then becomes

ln(p(z;θ)) ≈
M∑
m=1

ln

(
1√
πσ2

m

)
+ ln

(√
zm

z0,m(θ)

)
− 1

σ2
m

(zm − z0,m(θ))
2

(14)

No closed form solution that maximizes (14) can be found.
Thus, a numerical procedure has to be employed in order
to solve

θ̂ML = argmax
θ

ln(p(z;θ)) (15)

A good starting point for this can be obtained by letting

z̃ = ln
(√
rIz

)
=

1 r1
...

...
1 rm


︸ ︷︷ ︸

H

θ̃ + e

and solving the corresponding linear problem with θ̃ =

[ln(A) β]
T

. Note that e is not Gaussian and thus, the
solution is not the ML solution.

From (12), the components of the Fisher information
matrix can be calculated as

[I(θ)]11 = −
M∑
m=1

4z20,m(θ)

A2σ4
m

(
z20,m(θ)−K

)
(16a)

[I(θ)]12 = −
M∑
m=1

4z20,m(θ)rm

Aσ4
m

(
K − z20,m(θ)

)
(16b)

[I(θ)]21 = [I(θ)]12 (16c)

[I(θ)]22 = −
M∑
m=1

4z20,m(θ)r2m
σ4
m

(
z20,m(θ)−K

)
(16d)

and the Cramér-Rao Lower Bound (CRLB) of the covari-

ance matrix for θ̂ is then C θ̂ ≥ I(θ)−1. The constant K
in (16) is given by
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Fig. 5. Evaluation of the attenuation coefficients estimator.
The estimator is asymptotically unbiased with very
little initial bias (top) and very close to the Cramér-
Rao Lower Bound (bottom).

K = E

z2m I
2
1

(
2zmz0,m(θ)

σ2
m

)
I20

(
2zmz0,m(θ)

σ2
m

)
 (17)

with zm distributed as given by (11). Unfortunately, (17)
cannot be evaluated analytically and has to be calculated
numerically, possibly using numerical methods such as the
continued fraction method (Lentz, 1976) to evaluate the
ratio of the Bessel functions. Note that the inequality
I1(x)/I0(x) < 1 gives an upper bound on K and thus
a lower bound on the CRLB. Similarly, inequalities for
the lower bound of K exist (Laforgia and Natalini, 2010).
However, they do not simplify the problem significantly.

In order to evaluate the performance of the estimator,

104 simulations with θ0 = [0.01 0.1]
T

, σ2
m = 10−7, and

M = {101, 102, 103, 104} points between r = 10m/M
and r = 10m were performed. Figure 5 (top) shows the

ratios Â/A0 and β̂/β0. It can be seen that the estimator
is asymptotically unbiased for both parameters as the
ratios approach 1. Furthermore, the bias is very low for
few measurements (less than 0.1% at maximum). The
variances together with the CRLBs are shown in the lower
part of Figure 5.

4.2 Phase Velocity

Using (4) and (7), the measured phase ϕm is given as

ϕm = ϕ0 −
ωrm
cp

+ ε (18)

where ε ∼ U [−π, π] is the phase noise. Note that phase
unwrapping (along r) could be used in order to recover
the true value of ϕm. In this case, the distance ∆r between
rm and rm+1 should follow ∆r < cp/f in order to avoid
ambiguity. This is a problem in itself since cp is the variable
that is to be estimated. The problem can be treated by
assuming a cp in the order of the true phase velocity
and designing the experiment accordingly. (18) can be
reformulated to



ϕ̃m = ϕ̃0 −
ω

cp
+ ε̃ (19)

where ϕ̃m = ϕm/rm, ϕ̃0 = ϕ0/rm, and ε̃ = ε/rm. The
PDF for ϕ̃ then becomes

p(ϕ̃m; θ) =


rm
2π

ϕ̃0 −
ω

cp
− π

rm
< ϕ̃m < ϕ̃0 −

ω

cp
+

π

rm
0 otherwise

.

(20)

In this case, θ = cp and ϕ0 is known. From (20), the joint

PDF for ϕ̃ = [ϕ̃1 ϕ̃2 . . . ϕ̃M ]
T

is

p(ϕ̃; θ) =

M∏
m=0

rm
2π

u

(
min (ϕ̃− ϕ̃0 + πr̃) +

ω

cp

)
· u
(
−max (ϕ̃− ϕ̃0 − πr̃)− ω

cp

) (21)

where r̃ = [1/r1 1/r2 . . . 1/rM ] and u(x) is the unit step
function. The Neyman-Fisher Factorization (Kay, 1993)
is applied to (21) in order to obtain the two sufficient
statistics

T (ϕ̃) =

[
T1 (ϕ̃)
T2 (ϕ̃)

]
=

[
min (ϕ̃− ϕ̃0 + πr̃)
max (ϕ̃− ϕ̃0 − πr̃)

]
. (22)

By letting T3 = (T1 + T2)/2, it can be shown that

E {T3} = − ω
cp

(23)

and thus k̂ = −T3 is an unbiased estimator for the
wavenumber k = ω/cp. Unfortunately, the expected value
of the transformed estimator

ĉp = − ω

T3
(24)

is biased (the proof is omitted here for brevity). However,
the bias scales quickly as M increases and (24) can be con-
sidered a viable estimator. Since (21) is non-differentiable,
the CRLB for ĉp can not be established.

The estimator performance is evaluated by running 104

simulations with θ0 = 1′000m/s and θ0 = 10′000m/s
for M = {101, 102, 103, 104} samples of the phase at M
different distances. The results are shown in Figure 6.
As predicted, the estimator is biased for low numbers of
samples but the bias is very small and decreases rapidly.

5. RESULTS

The estimators proposed in the preceding section were ap-
plied to the system identification experiments as described
in Section 3. According to the theory presented, the esti-
mation of the damping coefficients and phase velocity is
done for each frequency individually using all the M = 12
spatial measurement.
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Fig. 6. Simulation results for the phase velocity estima-
tor (24). Top: Ratio between the estimated value and
the true value ĉp/cp. Bottom: Variance of ĉp.
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Fig. 7. Estimated damping coefficients Â(ω) (top) and

β̂(ω) (bottom).

5.1 Attenuation Coefficients

The estimated coefficients Â and β̂ are shown in Figure 7.
Restricting the discussion to the modes identified earlier,
it becomes immediately apparent that the attenuation
characteristics differ depending on the direction of particle
motion. As expected, the y-direction exhibits very high
attenuation which can be explained by the little excitabil-
ity in that direction. Furthermore, the x- and z-directions
show similar behavior, especially around 800Hz to 1kHz.

Comparing the two coefficients A and β, not much similar-
ity can be discovered in the excited ranges. A connection
between the two is not apparent.

5.2 Phase Velocity

Figure 8 shows the results of applying the phase velocity
estimator (24) to the measurement data. Note that in the
shown dispersion curves, points with high residuals were
removed in order to improve readability.

When considering the whole measured frequency range,
it is seen that besides the excited components around <
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Fig. 8. Dispersion curves obtained from the estimated phase velocities. (a) Whole measurement range up to 16kHz,
and (b) enlargement of the range between 0Hz and 1kHz.

1kHz, the previously identified mode around 4kHz to 5kHz
as well as more higher modes are revealed (Figure 8a). The
enlargement of the low frequencies in Figure 8b shows that
the phase velocity is nearly constant at frequencies below
750Hz. Then, around 750Hz, a jump in phase velocity is
encountered. This is very likely to be attributed to a mode
change (Rose, 1999).

Two observations can be made when analyzing the dif-
ferences between the three directions of particle motion.
Firstly, the x- and z-directions behave similarly. This is
no surprise as the particle motion for the dominating
modes is in the radial in-plane and tangential directions
(see Section 2). The behavior for the y-axis is different
and basically confirms the previous observations. Due to
the weak excitation in that direction little is measured.
Some residuals might be present because of alignment
inaccuracies and reflections at the boundary.

6. CONCLUSION

It was shown how wave propagation parameters from
spatio-temporal data obtained from system identification
experiments can be estimated. Using a statistical frame-
work, two well-behaved estimators were proposed, evalu-
ated, and applied to the measurement data. Interesting re-
sults were obtained from both the attenuation coefficients
and the dispersion curves which help to understand the
underlying problem better.

Some of the methods presented have to be developed more
thoroughly as indicated before. Especially the underlying
theory of wave propagation and the chosen approximation
contain more information about and connections between
the three parameters considered. Clearly, this should be
taken into account when developing the proposed methods
further.
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