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Abstract—This article presents modeling of wave propagation
in pavements from a system identification point of view. First,
a model based on the physical structure is derived. Second,
experiment design and evaluation is discussed and maximum
likelihood estimators for estimating the model parameters are
introduced, assuming an error-in-variables setting. Finally, the
proposed methods are applied to measurement data from two
experiments under varying environmental conditions. It is found
that the proposed methods can be used to estimate the dispersion
curves of the considered waveguide and the results can be used
for further analysis.

Index Terms—Modeling, system identification, parameter esti-
mation, maximum likelihood estimation, surface waves

I. INTRODUCTION

Wave propagation in pavements is of interest in many
different applications. For example, in non-destructive testing
(NDT), the dynamic response of a pavement is measured
and then used to assess the mechanical properties of the
pavement. This is useful for example for wear prediction
and maintenance [2], [3]. Other application areas that make
use of the pavement’s response to dynamic loads include
weigh-in-motion (WIM) systems [4], or, more recently, traffic
monitoring systems [5], [6]. In the latter, the seismic activity
caused by vehicles passing a sensor is processed in order to
estimate traffic and vehicle parameters of interest.

In both applications, a thorough understanding and mod-
eling of the underlying phenomena as well as experimental
design and evaluation are of great importance. Thus, under-
standing wave propagation in pavements becomes an appar-
ent measurement and system identification problem. Once a
theoretical model is derived, it is essential to determine the
model parameters from experiments in order to be able to draw
the desired conclusions. Furthermore, it is also important to
design the excitation in a way so that the measurements make
it possible to actually estimate the required parameters.

Many different approaches for both conducting experiments
and gathering measurement data in pavements as well as eval-
uation have been developed during the past decades. The ex-
perimental setup most often uses either a static method such as
a falling weight deflector (FWD) [7], [8] or a dynamic method
using surface waves with different configurations on the source
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or the receiver side [9]-[11]. Evaluation of the experiments
has been tackled using many different approaches [12], [13],
ranging from purely analytical methods [14], [15], over genetic
algorithms [16], [17] and neural networks [18] to a combina-
tion of the latter two [19].

Even though there is a broad amount of literature treating
the problem at hand, most efforts neglect inherent factors
such as measurement noise and disturbances. It is thus the
goal of this work to approach the problem using a sys-
tem identification framework that takes these problems into
account. The contribution are estimation methods based on
simplistic experiments. The results obtained from the proposed
methods could then be used for further interpretation or in
other inversion methods as mentioned above.

The remainder of this article is organized as follows. First,
a short introduction to wave propagation in a plate as a
waveguide is given in Section II, followed by the derivation
of the system identification and parameter estimation methods
in Section III. The proposed estimators are then simulated
in Section IV and the theory is applied to experiments and
evaluated in Section V. Some concluding remarks follow in
Section VI.

II. WAVEGUIDE MODEL

Wave propagation problems have been studied for a long
time and in many different contexts. The level of complexity
depends on the waveguide and can vary from trivial to
extremely difficult. The problem considered here is wave
propagation in roads. Thus, the waveguide is a multilayered
structure consisting of an asphalt concrete top layer and one
or more subgrade layers as illustrated in Fig. 1. Note that the
top layer can be a layered structure in itself due to periodic
resurfacing where a thin layer is fined down and replaced with
new asphalt concrete to improve riding comfort.

The simplest way of looking at this problem is by neglecting
the subgrade layers and simply assuming that the waveguide
consists of a free plate. In practice, this means assuming
traction free boundaries at the top-plates interface z = −h/2
(Fig. 1). Clearly, this is a quite strong simplification but it will
be clear from the derivation in the following sections that this
is a reasonable assumption. The actual boundary conditions
would dictate matching particle displacements at the layer
interfaces.

Research on waves in free plates has been plentiful ever
since the first paper by Lamb in 1917 [20]. Not surprisingly,
the predominant waves in plates are now commonly called
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Fig. 1: Illustration of a cross-section of a road with an asphalt
concrete top plate supported by one or more subgrade layers.
The dashed line indicates the midplane of the top plate which
is chosen as z = 0. Circular wave propagation from a source
is assumed and the particle motion at some point r from the
source is illustrated.

Lamb waves. Lamb waves describe longitudinal waves with
their particle motion in-plane in the direction of propagation
and vertical shear waves that have the particle motion out
of plane, perpendicular to the direction of propagation. Apart
from these two wave types, shear horizontal (SH) waves have
also been observed. SH waves are characterized by a particle
motion in-plane, perpendicular to the direction of propagation.
Both types of waves have received a great deal of attention
in the research community and hence, a complete treatment is
avoided here. Instead, only the essential steps relevant to this
application will be given in the following two sections. For an
in-depth study of the mechanical problem and intricacies, the
reader is referred to, for example, [20]-[23].

A. Lamb Waves

The first and predominant wave type mentioned above are
the so-called Lamb waves which have their particle motion
in the longitudinal (x) and vertical shear (z) directions. Lamb
waves can be seen as the product of waves reflected at the
top and bottom plate boundaries, resulting in infinite many
different modes. Most commonly, the problem is approached
using Helmholz decomposition. Solving the homogeneous
equation system of the two potentials Φ and Ψ given by

∇2Φ−
(
ω2

c2L
+ iωη̄L

)
Φ = 0 (1a)

∇2Ψ−
(
ω2

c2T
+ iωη̄T

)
Ψ = 0 (1b)

yields the well known solutions that exhibit modes that are
symmetric and antisymmetric in their amplitude with respect
to the midplane of the plate. In (1), i is the imaginary unit,
ω is the circular frequency, cL and cT are the longitudinal
and transversal bulk wave velocities, and η̄L and η̄T the
longitudinal and transversal viscous damping, respectively.
Furthermore, by imposing the boundary conditions (traction
free surfaces at z = ±h/2), the dispersion relation [23, pp.
106ff] is obtained. Unfortunately, the latter can only be solved
numerically and hence the problem becomes difficult to solve.

However, assuming a point source which results in cylin-
drical wave spread, the particle displacement for any mode at

the surface z = ±h/2 can be expressed by

Y x(r, ω) = Ax(ω)H(1)
0 (−kr)U(ω) (2a)

Y z(r, ω) = Az(ω)H(1)
0 (−kr)U(ω) (2b)

where Y x and Y z are the particle displacement in the lon-
gitudinal (x) and vertical (z) directions, respectively. Ax and
Az are the (complex) amplitudes in the respective direction, r
is the distance from the source to the point of measurement,
H(1)

0 (x) is the Hankel function of the first kind of order 0,
U(ω) is the source spectrum, and

k = kr − iki =
ω

cp(ω)
− iη(ω)

is the complex wavenumber where cp is the phase velocity
and η the attenuation coefficient. (2) can be rewritten as[

Y x(r, ω)
Y z(r, ω)

]
=

[
Ax(ω)
Az(ω)

]
H(1)

0 (−kr)U(ω)

=

[
Gx(r, ω)
Gz(r, ω)

]
U(ω)

(3)

with
Gx(r, ω) = Ax(ω)H(1)

0 (−kr)
Gz(r, ω) = Az(ω)H(1)

0 (−kr)
(4)

B. Shear Horizontal Waves

The second kind of waves are shear horizontal (SH) waves.
As opposed to the previous waves, the particle motion of
SH waves is in-plane, but perpendicular to the direction of
propagation. The assumptions for horizontal shear are simpler
than for Lamb waves and result in the classical wave equation
(spectral form) [23]

∇2Y y −
(
ω2

c2T
+ iωη̄T

)
Y y = 0 (5)

for the particle displacement Y y in y-direction. Even SH
waves exhibit symmetric and antisymmetric modes with re-
spect to the midplane z = 0 of the plate. However, due to the
simpler form of the dispersion relation (see [23, pp. 243ff]),
the antisymmetric modes disappear at the surfaces z = ±h/2
and the solution to (5) reduces to

Y y(r, ω) = Ay(ω)H(1)
0 (−kyr)U(ω) (6)

where

ky = kyr − ikyi =
ω

cyp(ω)
− iηy(ω)

and Ay is the complex amplitude, cyp the phase velocity, and
ηy the attenuation coefficient, all in y-direction.

(6) can again be rewritten as

Y y(r, ω) = Gy(r, ω)U(ω) (7)

with
Gy(r, ω) = Ay(ω)H(1)

0 (−kyr) (8)

which is of the same form as (4).
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Fig. 2: Measurement setup for the pulse response measurements.

III. SYSTEM IDENTIFICATION

A. Experiment Design

System identification for linear systems is a well-established
domain and the literature on experiment design and evaluation
is plentiful, see, for example [24] or [25] for thorough in-
troductions to the field. An important aspect when designing
system identification experiments is how to excite the system.
Ideally, it should be excited in a broad frequency range so that
all the important dynamics of the systems can be captured. To
this end, random noise or random phase multisines are very
well suited as excitation signals. Carefully designed, the latter
type of signal is also an excellent choice for detecting possible
non-linearities in the system [26]. However, it can sometimes
prove difficult to use such an excitation since it might be
impractical or impossible to apply this kind of excitation to
a system due to different limiting factors and the practitioner
has to resort to something else.

On the other hand, research in experimental pavement test-
ing has been ongoing for the last 60 years or so and a variety
of different testing methodologies have been developed. Some
of the most popular methods include the spectral analysis
of surface waves (SASW) [9], [27], multichannel analysis of
surface waves (MASW) [10], or, more lately, the multichannel
simulation with one receiver (MSOR) [28] methods. The setup
used here is essentially a combination of the latter two which
was also discussed in [11]. It is fairly simple and illustrated
in Fig. 2. A sledge hammer is used to excite the structure at
M predefined distances rm (m = 1, . . . ,M ) from the sensor.
At each distance, the experiment is repeated K times and
the response is measured using a triaxial accelerometer. The
measured signals are the hammer force and the acceleration
in the x, y, and z directions. Even though the experiment
setup is similar to the setup used in [11], the measurements
are analyzed in a different way due to the different purpose.

Some of the biggest advantages of this setup are its sim-
plicity. The fact that it can be built up easily means that
experiments can be conducted rapidly and that it is non-
destructive. An apparent and possibly major drawback is that
it is hard to control the excitation bandwidth and energy
accurately. A crude way to influence this is to use different
contact pads which dampen the hammer upon impact.

Note that once the experiment is set up, the time to conduct
the measurements is given by K ·M . For a fixed experiment
time, this results in a trade-off between spatial information

G

x z

v

u

w

y

Fig. 3: Structure of the error-in-variables problem with the
unknown system G, the true input u, the true output y, the
measurement signals x and z, and the measurement noises v
and w.

which contributes to the accuracy of the parameters of interest
and averaging of the individual transfer functions as it will be
shown in the following sections.

Finally, both, the input generated by the hammer as well
as the output signals are measured and hence, they will both
be disturbed by measurement noise. This has to be taken into
account when analyzing the measurement data and estimating
the frequency response function (FRF). One approach to do
so is to use the error-in-variables framework as illustrated in
Fig. 3.

B. Non-Parametric Frequency Response Function

Taking the above experimental setup and considerations into
account, the problem can now be formalized. Starting from the
fact that we are using an error-in-variables setting, the signal
for the kth measurement at the mth distance is given by

xk(rm, n) = uk(rm, n) + v(n) (9a)
zαk (rm, n) = yαk (rm, n) + w(n)

= gα(rm, n) ∗ uk(rm, n) + w(n)
(9b)

where uk(rm, n) is the true excitation, yαk (rm, n) the true
output signal, and xk(rm, n) and zαk (rm, n) are the measured
input and output signals, respectively. gα(rm, n) is the impulse
response of the system and ∗ denotes the convolution. The
superscript α indicates the component of the measurement
vector and is one of {x, y, z}. Finally, the imperfections of
the measurement equipment, thermal noise, etc. are modeled
as white Gaussian noise, that is, v(n) ∼ N (0, σ2

v) for the input
and w(n) ∼ N (0, σ2

w) for the output.
Since the measured input and output signals are both pulses,

no windowing has to be applied to reduce leakage if it is
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ensured that the signals are measured from rest to rest. Hence,
taking the unitary discrete Fourier transform (DFT) of (9)
yields

Xk(rm, ωl) = Uk(rm, ωl) + V (ωl)

Zαk (rm, ωl) = Gα(rm, ωl)Uk(rm, ωl) +W (ωl)
(10)

in the Fourier domain. The noise components V (ωl) and
W (ωl) are complex Gaussian distributed of the form V (ωl) ∼
CN (0, σ2

v) and W (ωl) ∼ CN (0, σ2
w) for l = 1, . . . , N/2− 1,

respectively [29]. The frequency of the lth bin is given by

ωl =
2πlfs
N

where N is the number of samples and fs is the sampling
frequency. Note that the dependencies on rm and ωl will
be dropped for the sake of simplicity where not explicitly
necessary from now on.

The K measured independent input-output pairs for the
distance rm yields 2K measurement values that can be used
to estimate the K+1 unknowns U1, . . . , UK , and Gα for each
ωl of interest. It is straight forward that the joint probability
density function (PDF) for X =

[
X1 . . . XK

]T
and

Zα =
[
Zα1 . . . ZαK

]T
is

p(X,Zα; U, Gα)

= CN
([

X
Zα

]
;

[
U

GαU

]
,

[
Cvv 0
0 Cww

])
(11)

where U =
[
U1 . . . UK

]T
and the multivariate complex

Gaussian PDF CN (x;µ,C) is as defined in [29],

Cvv = σ2
vIK ,

Cww = σ2
wIK ,

and IK is the K ×K identity matrix.
From (11), the maximum likelihood estimator (MLE) for

Gα is given by (see Appendix)

Ĝα =
−b±

√
b2 − 4ac

2a
(12)

with

a =
1

σ2
w

(Zα)HX

b =
1

σ2
v

XHX− 1

σ2
w

(Zα)HZα

c = − 1

σ2
v

XHZα

and the superscript H denotes the conjugate transpose.
Given the estimate Ĝα from (12), the MLE for U is

then [29]

Û =
(
HH(Ĝα)C−1X H(Ĝα)

)−1
HH(Ĝα)C−1X X (13)

where

H(Gα) =

[
IK

GαIK

]
and X and CX as defined in (25) in the Appendix.

Finally, the asymptotic covariance matrix of (12)-(13) is
given by the inverse of the Fisher information matrix ((33)
in the Appendix), that is,

lim
K→∞

cov{Û, Ĝα} = I−1(U, Gα)

=

[
HHC−1X H HHC−1X H′U

UHH′HC−1X H UHH′HC−1X H′U

]−1 (14)

which can be estimated by replacing the unknowns Gα and
U with their estimates (12) and (13), respectively. Note that
in practice, convergence is often attained for reasonable K �
∞ [29] and the simulations in Section IV indicate that this is
the case for K ≈ 10.

Calculating (12) and (14) for every frequency bin ωl and
distance rm will finally yield an estimate of the complete non-
parametric FRF Gα(rm, ωl) and its variance.

C. Semi-Parametric FRF Model

Using the FRF estimates from the previous section and
the analytical model for wave propagation introduced in Sec-
tion II, the parameters of the latter can be estimated. This two-
step procedure is similar to the method of moments estimation
scheme [29] but differs in the way that instead of a moment
matching, a new estimator is derived based on the distribution
of the previously estimated parameters.

1) Lamb Waves: The analytical model for the transfer func-
tion for Lamb waves is given by (4) where A =

[
Ax Az

]T
,

and k are unknown, complex, and frequency dependent pa-
rameters. From (12)-(14) we also know that asymptotically,
Ĝα(rm, ωl) ∼ CN (Gα(rm, ωl), (σ

α
m)2) [29]. Letting

Ĝ =



Ĝx(r1, ωl)
...

Ĝx(rM , ωl)

Ĝz(r1, ωl)
...

Ĝz(rM , ωl)



the joint PDF is modeled as

p(Ĝ; A, k) = CN
(
Ĝ;µĜ(A, k),CĜ

)
(15)
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where

µĜ(A, k) =



AxH(1)
0 (−kr1)

...
AxH(1)

0 (−krM )

AzH(1)
0 (−kr1)

...
AzH(1)

0 (−krM )



=



H(1)
0 (−kr1) 0

...
...

H(1)
0 (−krM ) 0

0 H(1)
0 (−kr1)

...
...

0 H(1)
0 (−krM )


[
Ax

Az

]

= F(k)A

, (16)

CĜ =

[
Cx

Ĝ
0

0 Cz
Ĝ

]
, (17)

and

Cα
Ĝ

=


(σα1 )2 0 . . . 0

0 (σα2 )2
...

...
. . . 0

0 . . . 0 (σαM )2

 . (18)

The maximum likelihood estimates for A, and k are the
maximizers of the exponent of (15) given by

−
(
Ĝ− µĜ(A, k)

)H
C−1

Ĝ

(
Ĝ− µĜ(A, k)

)
which is a separable problem since µĜ is linear in A.
Therefore, k̂ is found by maximizing [29]

k̂ = argmax
k

J(k)

= argmax
k

Ĝ
H

C−1
Ĝ

F
(
FHC−1

Ĝ
F
)−1

FHC−1
Ĝ

Ĝ
(19)

where F , F(k). Once k̂ is found, Â is given by

Â =
(
FH(k̂)C−1

Ĝ
F(k̂)

)−1
FH(k̂)C−1

Ĝ
Ĝ (20)

The stationary points for k̂ in (19) are obtained by setting
the gradient ∂J(k)/∂k∗ = 0. The gradient is given by [30]

∂J(k)

∂k∗
=Ĝ

H
C−1

Ĝ
F

((
∂

∂k∗

(
FHC−1

Ĝ
F
)−1)

FH

+
(
FHC−1

Ĝ
F
)−1 ∂

∂k∗
FH
)

C−1
Ĝ

Ĝ

(21)

where it was made use of the fact that F only depends on k
and not on its complex conjugate k∗. Furthermore,

∂

∂k∗

(
FHC−1

Ĝ
F
)−1

=−
(
FHC−1

Ĝ
F
)−1

·
(

∂

∂k∗
FHC−1

Ĝ
F

)(
FHC−1

Ĝ
F
)−1

.

and the derivative of FH with respect to k∗ is

∂FH

∂k∗
=

(
∂F

∂k

)H
=



r1H(1)
1 (−kr1) 0

...
...

rMH(1)
1 (−krM ) 0

0 r1H(1)
1 (−kr1)

...
...

0 rMH(1)
1 (−kr1)



H

.

Unfortunately, (21) does not exhibit a closed form solution.
Therefore, a numerical root searching algorithm such as the
well-known Newton-Raphson algorithm has to be employed.

The Hessian as defined in [30] is given by

∂2J(k)

∂k∗∂k
=Ĝ

H
C−1

Ĝ

(
F′
(

∂

∂k∗

(
FHC−1

Ĝ
F
)−1)

FH

+ F′
(
FHC−1

Ĝ
F
)−1

F′H

+ F

(
∂

∂k∗

(
∂

∂k

(
FHC−1

Ĝ
F
)−1))

FH

+ F

(
∂

∂k

(
FHC−1

Ĝ
F
)−1)

F′H
)

C−1
Ĝ

Ĝ

(22)

where F′ , ∂F/∂k. (21)-(22) can now be used to estimate k̂
in (19) numerically.

A decent starting point for the numerical search is found
by using the asymptotic approximation of the Hankel function
given by [31]

H(1)
0 (x) ≈

√
2

πx
ei(x−π/4)

which leads to two (biased) problems linear in ki given by

ln(|Gα(r, ω)|) ≈ ln (|Aα|) + ln

(∣∣∣∣∣
√

2

πk

∣∣∣∣∣
)
− ln

(√
r
)
− kir

ln(|Gα(r, ω)|) + ln
(√
r
)
≈ ln (|Aα|) + ln

(∣∣∣∣∣
√

2

πk

∣∣∣∣∣
)
− kir

ln(
√
r|Gα(r, ω)|) ≈ κ− kir

and similarly for kr through the phase of Gα

∠Gα(r, ω) ≈ ∠Aα − ∠
√
k − π/4− krr

∠Gα(r, ω) + π/4 ≈ ∠Aα − ∠
√
k − krr

∠Gα(r, ω) + π/4 ≈ φ− krr

which can be easily solved using linear regression.
The Fisher information matrix [29] is given by

I(A, k) =

[
FHC−1

Ĝ
F FHC−1

Ĝ
F′A

AHF′HC−1
Ĝ

F AHF′HC−1
Ĝ

F′A

]
. (23)

and finally, the Cramér-Rao lower bound and asymptotic
covariance of Â and k̂ are given by the inverse of the Fisher
information matrix (23).
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2) Shear-Horizontal Waves: For SH modes, the derivation
of the Maximum Likelihood estimator is based on (8). Since
this is of the same form as (4), the resulting estimators are
essentially the same as (19)-(23) but with

F(ky) =


H(1)

0 (−kyr1)
...

H(1)
0 (−kyrM )


and

F′(ky) =


r1H(1)

1 (−kyr1)
...

rMH(1)
1 (−kyrM )


IV. SIMULATION

A. Simulation Setup

In order to verify the derived estimation scheme and to as-
sess its performance under ideal conditions, a series of Monte
Carlo simulations are run. First, the number of measurement
points M is varied between r1 = 1 m and rM = 10 m
with M = 5 and M = 10. Furthermore, for each M , the
number of repeated measurements K is varied from K = 1
up to K = 100. Finally, for each K-M -pair, a total of
1, 000 simulations were run in order to verify the statistical
properties. The input and output measurement noise variances
were chosen as

σ2
v = σ2

w = 10× 10−3.

and the data was generated according to the model introduced
in Section II. Finally, the true input signal U was chosen to
have magnitude 1, that is, so that

UHU = 1.

B. Non-Parametric Frequency Response Function

The simulation results for the estimator of the non-
parametric FRF are shown in Fig. 4. The real and imaginary
parts of the error G− Ĝ of the estimated FRF coefficient are
shown in Fig. 4a and Fig. 4b, respectively, for two distances,
r1 = 5 m and r2 = 10 m. As it can be seen, the estimator
converges to the true value for K ≈ 5, that is, for only few
experiments at the given distance.

Furthermore, the variance of Ĝ is shown and compared to
the Cramér-Rao lower bound in Fig. 4c. First, note that the
CRBs for the two distances are very close to each other and
it is hence difficult to distinguish the two cases. Also, the
variance converges rapidly to the theoretical lower limit and
the estimator becomes efficient for low values of K. This
is very beneficial since this reduces the time required for
conducting experiments.

C. Semi-Parametric Frequency Response Function

Fig. 5 and Fig. 6 illustrate the simulation results for the
estimators for k and A, respectively. It can be seen from the
mean estimation error that the estimators become unbiased for
K ≈ 11 for M = 5 measurements and for K ≈ 8 for M = 10

100 101 102
−1
−0.5

0

0.5

1
×10−2

K

<{
G
−
E
{Ĝ
}} r = 5 m

r = 10 m

(a)

100 101 102
−1
−0.5

0

0.5

1
×10−2

K

={
G
−

E
{Ĝ
}} r = 5 m

r = 10 m

(b)

100 101 102
10−4

10−3

10−2

K

va
r{
Ĝ
}

r = 5 m
r = 10 m

(c)

Fig. 4: Simulation results for Ĝ for different distances. (a)
and (b) Mean estimation error G − Ĝ for the real and
imaginary parts, respectively, and (c) Variance var{Ĝ} (solid)
and Cramér-Rao lower bound (dashed).

measurements. This is also confirmed by the comparison of
the variance to the CRB which is attained around the same
values for K for either M .

From these simulations, it can be concluded that for the
given noise levels, at least around K ·M ≈ 50 measurements
are required to obtain unbiased estimates that also attain the
CRB.

V. RESULTS

Experiments using the setup outlined in Section III-A and
Fig. 2 were conducted on two different occasions, once dur-
ing a cold February day (ambient temperature approximately
−15 ◦C) and once on a spring day (ambient temperature ap-
proximately 15 ◦C) on a regular road in northern Sweden.OIn
both occasions, the pavement was excited in 0.5 m-intervals
starting from r1 = 0.5 m up to rM = 6 m yielding M = 12
spatially separated measurement points. At each distance, the
hammer was blown K = 10 times. For both experiments, the
sensors were mounted at exactly the same positions and also
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Fig. 5: Simulation results for k̂ for varying M and K.
(a) and (b) Mean estimation error k − k̂ for the real and
imaginary parts, respectively, and (c) Variance var{k̂} (solid)
and Cramér-Rao lower bound (dashed).

the excitation points were chosen to be the same. The sensors
were sampled at a sampling rate of fs = 32.768 kHz.

A. Input and Output Signal Analysis

An example of the measured input and output spectra for the
winter measurements is given in Fig. 7. In the depicted case,
the distance between the source and sensor is r = 2 m. It can
be seen that the input energy is mostly concentrated below
800 Hz to 1 kHz. The response shown in Figure 7b shows a
relatively smooth trend following the excitation. However, a
sharp peak is noted around 4 kHz which indicates the existence
of an eigenmode.

For the spring measurements shown in Fig. 8, one can see
that the excitation is comparable to the excitation used in
the winter experiments, with the main energy concentration
below 1 kHz. The output, however, differs significantly from
the output observed during cold conditions. While it is still
quite smooth up to around 500 Hz, there seems to be no or
very little energy transmitted for frequencies above that point.
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Fig. 6: Simulation results for Â for varying M and K.
(a) and (b) Mean estimation error A − Â for the real and
imaginary parts, respectively, and (c) Variance var{Â} (solid)
and Cramér-Rao lower bound (dashed).

Furthermore, the peak around 4 kHz is not observed either.

B. Non-Parametric Frequency Response Function

Two examples for the non-parametric frequency response
function estimated using (12) and as described in Section III-B
are shown in Fig. 9 and Fig. 10 for both, winter and spring
measurements.

For the winter measurements in Fig. 9 a smooth curve is
obtained for both r = 2 m (Fig. 9a) and r = 4 m (Fig. 9b).
Furthermore, the estimated FRF is significantly stronger than
its variance and hence, good knowledge is obtained. Finally, it
is difficult to see the spatial dampening from the shown plots.
However, inspection of the peaks around 4 kHz shows that the
magnitude decreases about 5 dB/m around these frequencies.

The spring measurements shown in Fig. 10 exhibit a
quite different behavior. First, as it can be expected from
the previous section’s discussion, the estimated FRF is only
smooth up to around 800 Hz and then becomes rather noisy.
This is also reflected in the fact that starting from about
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Fig. 7: Measured input (top) and output (bottom) spectra for
r = 2 m, winter measurements.
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Fig. 8: Measured input (top) and output (bottom) spectra for
r = 2 m, spring measurements.

this frequency, there is essentially no difference between the
estimated FRF and the noise, hence, only noise is measured.
Second, comparing Fig. 10a and Fig. 10b, it is observed that
with increasing distance, the frequency range that allows wave
propagation is decreased.

Finally, one should note that the seasonal differences out-
lined above are not surprising since the temperature changes
affect the properties of both, the asphalt concrete top plate
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Fig. 9: Magnitude spectra of the estimated non-parametric fre-
quency response function (solid) and their variances (dashed)
for the winter measurements. (a) r = 2 m, and (b) r = 4 m.

as well as the subgrade layers. Colder temperatures clearly
increase the stiffness of the material and hence, better wave
transmission is obtained and vice-versa.

C. Semi-Parametric Frequency Response Function

Using the results from the previous section and the esti-
mators (19)-(20) as described in Section III-C, the parameters
of the semi-parametric FRF for the measurement data were
estimated and are evaluated here. Note that in Fig. 11-Fig. 14
only frequencies where the SNR is larger than 25 dB and the
coefficient of determination R2 defined by

R2 = 1− (Ĝ− µ̄Ĝ)H(Ĝ− µ̄Ĝ)

(Ĝ− F(k̂)Â)H(Ĝ− F(k̂)Â)

with µ̄G the sample mean of Ĝ is larger than 0.5 are shown.
This ensures that the resulting graphs do not suffer from
cluttering due to insignificant (noise-only) measurements since
the only frequencies of interest are the ones where actual wave
propagation takes place. In practice, this occurs around the
eigenmodes and since these are relatively concentrated around
certain frequencies, the frequencies in between will not be
shown. Also note that changing either the threshold for the
SNR or the R2 value will affect the shown results.

1) Lamb Modes: Fig. 11 shows the estimated dispersion
curves for Lamb modes, that is, the real part of the wavenum-
ber k = kr − iki (Fig. 11a) and the phase velocity cp(ω) =
ω/kr(ω) (Fig. 11b) as functions of frequency, for the particle
motion in the x- and z-directions. It can be seen that different
branches which can be attributed to different wave modes
can be identified from the curve for the winter measurement
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Fig. 10: Magnitude spectra of the estimated non-parametric
frequency response function (solid) and their variances
(dashed) for the spring measurements. (a) r = 2 m, and (b)
r = 4 m.

(black). Furthermore, the different modes are observed for the
whole frequency range considered and different modes are
seen between 0 Hz and 1 kHz, 2 kHz and 5 kHz (the jump
around 4 kHz can most likely be attributed to phase wrapping),
and 8 kHz and 10 kHz. For the spring measurements the pre-
vious observations are once again confirmed in the sense that
fewer and basically only low-frequency modes are observed
(gray). Further, phase wrapping is observed around 250 Hz.

The parameters related to attenuation are shown in Fig. 12.
However, interpretation of these is not as straight-forward as
for the dispersion curves. For the modes identified earlier, it
can be seen that the attenuation is particularly high (small
Ax and Az) in the middle of the mode whereas it seems to
be less towards the upper end of the mode, probably due to
better decoupling from other modes. Also, there is very little
information to be obtained for the spring measurements.

2) SH Modes: The dispersion curves for the second type of
wave mode, shear horizontal waves, are shown in Fig. 13. It is
obvious that these types of waves differ greatly from the Lamb
modes discussed in the previous paragraph. For the winter
measurements (black), the modes are much more scattered and
the most predominant branch is found around 3 kHz, followed
by what appears to be another major branch between 1 kHz
and 2 kHz and one around 5 kHz, and finally, no propagation
is observed above 5 kHz. Regarding the spring measurements
(gray), similar observations are made but the branches are even
more scattered and disjoint, except for one predominant branch
around 3 kHz.

Considering the attenuation parameters shown in Fig. 14
similar observations are made. The coefficients are very scat-
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Fig. 11: Estimated dispersion curves for Lamb waves. (a) Real
part of the wavenumber, and (b) phase velocity as functions
of the frequency.

tered and little structure is observed.

D. Discussion
First, the results from applying the methods to the measure-

ment data indicate that there is considerable variation in the
material properties depending on the environmental conditions.
This is reflected in the differences between the winter and
spring measurements in both, the input-output signal analysis,
the non-parametric FRF, and the semi-parametric FRF. Not
surprisingly, the changing material properties affect all aspects
of wave propagation: bandwidth of the propagated waves,
propagation range (attenuation), and phase velocity. Thus, for
a year-round application, it is important to carefully choose
the frequency range in which the desired application should
operate in order to guarantee a stable system.

Second, the proposed model gives reasonable results and
is hence applicable. However, the model does not explicitly
provide the mechanical parameters of the underlying system
and can thus only be applied in cases where these parameters
are unimportant. In order to estimate the mechanical parame-
ters such as the elastic modulus, further processing would be
required.

Third, the predominant wave mode encountered are Lamb
waves which have their particle motion in-plane (x) and out-
of-plane normal (z) to the direction of wave propagation.
This is no surprise since the excitation is also normal to the
surface and thus, these are the preferred components to use
for applications making use of waves in pavements.

VI. CONCLUSION

It was shown how a statistical framework can be used for
estimating the parameters of a model describing wave propa-
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Fig. 12: Attenuation coefficients for Lamb modes, (a) ki, (b)
Ax, and (c) Az .

gation in pavements from spatio-temporal experimental data.
The model was derived from established theory and exhibits
commonly encountered properties such as dispersive wave
propagation and dampening. Then, estimators for the non-
parametric frequency response function as well as the model
shown earlier were derived. Evaluation of these estimators
using experimental data obtained on two different occasions
with varying environmental conditions showed that the method
is feasible and revealed interesting details about the underlying
structure.

An example for a future application of the proposed method
could be the tuning of a road vibrations-based traffic moni-
toring system mentioned in the beginning. By conducting a
couple of experiments as described here, the measurement
system can then determine the initial material properties (atten-
uation and phase velocity) and use these in vehicle parameter
estimation algorithms.

Finally, future work should consider a more complete
parametric modeling, either using first principles or empirical
modeling, of the frequency response function as well as
modeling of the parameter variation. However, both tasks are
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Fig. 13: Estimated dispersion curves for horizontal shear
waves. (a) Real part of the wavenumber, and (b) phase velocity
as functions of the frequency.
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Fig. 14: Attenuation coefficients for horizontal shear wave
modes, (a) kyi , and (b) Ay .

extremely challenging since the physics of the waveguide are
non-trivial and the seasonal variation might be hard to measure
with a reasonable effort.

APPENDIX

The joint PDF for the measured input X and output Zα is a
multivariate complex Gaussian PDF given by (11). Thus, the
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maximum likelihood estimator for the unknown parameters
θ =

[
UT Gα

]T
is given by

θ̂ = argmax
θ

− (X − µX (θ))
H

C−1X (X − µX (θ)) (24)

where

X =

[
X
Zα

]
and CX =

[
Cvv 0
0 Cww

]
(25)

are introduced for simplicity. Also, the mean is given by

µX (θ) =

[
U

GαU

]
=

[
IK

GαIK

]
U = H(Gα)U (26)

which is linear in U and hence, the problem is separable. The
MLE for U given Gα is thus [29]

Û =
(
HH(Gα)C−1X H(Gα)

)−1
HH(Gα)C−1X X (27)

Substituting (27) in (24) yields the cost function

J(Gα) = XHC−1X H
(
HHC−1X H

)−1
HHC−1X X (28)

for Gα where H , H(Gα). The extrema of (28) are found
by deriving with respect to the complex conjugate of Gα as
defined in [30] and equating it to zero.

First, note that
∂

∂(Gα)∗
H = 0 (29a)

since H does not depend on (Gα)∗ and

∂

∂(Gα)∗
HH =

(
∂

∂Gα
H

)H
=
[
0 IK

]
. (29b)

Finally, we denote the derivative of H with respect to Gα as
H′, that is,

H′ ,
∂

∂Gα
H (29c)

Using (29) then yields

∂J(Gα)

∂(Gα)∗
=

∂

∂(Gα)∗
XHC−1X H

(
HHC−1X H

)−1
HHC−1X X

= XHC−1X H

(
∂

∂(Gα)∗

(
HHC−1X H

)−1
HH

)
C−1X X

for the derivative of the cost function. Furthermore, applying
the product rule gives

∂

∂(Gα)∗

(
HHC−1X H

)−1
HH =

(
∂

∂(Gα)∗

(
HHC−1X H

)−1)
·HH +

(
HHC−1X H

)−1 ∂

∂(Gα)∗
HH

and

∂

∂(Gα)∗

(
HHC−1X H

)−1
= −

(
HHC−1X H

)−1
·
((

∂

∂(Gα)∗
HH

)
C−1X H

)(
HHC−1X H

)−1

Finally, the derivative becomes

∂J(Gα)

∂(Gα)∗
= XHC−1X H

(
HHC−1X H

)−1
H′HC−1X X

−XHC−1X H
(
HHC−1X H

)−1 (
H′HC−1X H

)
·
(
HHC−1X H

)−1
HHC−1X X

(30)

Substituting the values for X , CX , H, and H′ gives

XHC−1X H =
[
XH (Zα)H

] [C−1vv 0

0 C−1ww

] [
IK

GαIK

]
=

XH

σ2
v

+
Gα(Zα)H

σ2
w

HHC−1X H =
[
IHK (GαIK)H

] [C−1vv 0

0 C−1ww

] [
IK

GαIK

]
=

1

σ2
v

+
Gα(Gα)∗

σ2
w

H′HC−1X X =
[
0 IK

] [C−1vv 0

0 C−1ww

] [
X
Zα

]
=

Zα

σ2
w

H′HC−1X H =
[
0 IK

] [C−1vv 0

0 C−1ww

] [
IK

GαIK

]
=
Gα

σw

and

HHC−1X X =
(
XHC−1X H

)H
=

X

σ2
v

+
(Gα)∗Zα

σ2
w

which finally gives

∂J(Gα)

∂(Gα)∗
=

(
1

σ2
v

+
Gα(Gα)∗

σ2
w

)−1
·
(

XH

σ2
v

+
Gα(Zα)H

σ2
w

)
Zα

σ2
w

−
(

1

σ2
v

+
Gα(Gα)∗

σ2
w

)−2
· G

α

σw

(
XH

σ2
v

+
Gα(Zα)H

σ2
w

)(
X

σ2
v

+
(Gα)∗Zα

σ2
w

) (31)

Setting (31) equal to zero, expanding and simplifying finally
yields

0 = (Gα)2
(Zα)HX

σ2
w

+Gα

(
XHX

σ2
v

− (Zα)HZα

σ2
w

)
− XHZα

σ2
v

which is quadratic in Gα and hence, J(Gα) has two finite
extrema given by

Ĝα =
−b±

√
b2 − 4ac

2a
(32)

where

a =
(Zα)HX

σ2
w

b =
XHX

σ2
v

− (Zα)HZα

σ2
w

c = −XHZα

σ2
v

It is not straight forward to see which of the two solutions
is the maximum and minimum, respectively. However, it is not
expensive to calculate both, evaluate the cost (24), and then
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select the maximum from the two possibilities. Also, note that
b is a real number and −4ac is a real, positive number.

The Fisher information matrix for {U, Gα} can be parti-
tioned according to

I(U, Gα) =

[
IUU IUGα

IGαU IGαGα

]
where the submatrices are given by

IUU = E

{
∂ ln(p (Z;θ))

∂U∗

(
∂ ln(p (Z;θ))

∂U∗

)H}

IUGα = E

{
∂ ln(p (Z;θ))

∂U∗

(
∂ ln(p (Z;θ))

∂(Gα)∗

)H}
IGαU = IHUGα

IGαGα = E

{
∂ ln(p (Z;θ))

∂(Gα)∗

(
∂ ln(p (Z;θ))

∂(Gα)∗

)H}
which finally gives

I(U, Gα) =

[
HHC−1X H HHC−1X H′U

UHH′HC−1X H UHH′HC−1X H′U

]
(33)

and the covariance is thus bounded by the Cramér-Rao lower
bound (CRLB) as the inverse of (33) [29]. Note that since the
true U and Gα are unknown, the asymptotic covariance can
be estimated using the estimated Û and Ĝα instead.
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