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Vehicle Tracking Based on Fusion of Magnetometer
and Accelerometer Sensor Measurements with

Particle Filtering
Roland Hostettler, Member, IEEE, Petar M. Djurić, Fellow, IEEE

Abstract—In this article, we propose a method for vehicle
tracking on roadways using measurements of magnetometers
and accelerometers. The measurements are used to build a
low-cost, low-complexity vehicle tracking sensor platform for
highway traffic monitoring. First, the problem is formulated by
introducing the process model for the motion of the vehicle
on the road and two measurement models, one for each of
the sensors. Second, it is shown how the measurements of
the sensors can be fused using particle filtering. The standard
sampling importance resampling (SIR) particle filter is extended
for processing of multi-rate sensor measurements and models
that employ unknown static parameters. The latter are treated
by Rao-Blackwellization. The performance of the method is
demonstrated by computer simulations. It is found that it is
feasible to fuse the two sensors for vehicle tracking and that the
proposed multi-rate particle filter performs better than particle
filters that process only measurements of one of the sensors.
The main contribution of this paper is the novel approach of
fusing the measurements of road-mounted magnetometers and
accelerometers for vehicle tracking and traffic monitoring.

Index Terms—Particle filters, sensor fusion, vehicle tracking

I. INTRODUCTION

Target tracking is of importance in many different applica-
tions ranging from air traffic control [2] to tracking of mobile
phone users within a cellular network [3]. Another important
application is in intelligent transportation systems that allows
for tracking of vehicles on roadways. This is of interest for
obtaining insightful information about the traffic which can be
used, for example for understanding traffic patterns such as
congestions [4], [5] or for predicting/preventing accidents [6]
(we note that the prevention of accidents requires very high
accuracy of tracking). The gathered information (aggregate or
individual) can be broadcast to individual vehicles equipped
with corresponding receiver equipment [4].

Popular approaches for vehicle tracking itself are often
based on vision systems [7]-[10], radar [11], or a combina-
tion of such techniques [12]. Recently, solutions that employ
low-cost, low-complexity sensors such as microphones [10],
[13], magnetometers [14], [15], or accelerometers [16] have
emerged.
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Target tracking is often formulated as a state estimation
problem where the position of the target as a function of time is
considered a random process [17]. The measurements obtained
from the sensors are described as a function of the states, for
example, of the range and bearing of a target [18]. In many
cases, these measurements are highly nonlinear functions of
the states which, for their processing, often require the use
of approximating methods, such as the extended Kalman or
particle filters. It has been shown that the latter is a suitable
approach in many different applications; see [2] for a thorough
overview.

In this work, we address vehicle tracking by combining
magnetometer and accelerometer measurements in a single
sensor unit that is mounted on the road surface as illustrated
in [16]. Even though tracking using individual sensors has
been addressed before [14]-[16], the combination of the two
sensors has not been considered yet. An obvious major ad-
vantage is that the two different sensors come at low costs
and that they complement each other in the sense that they
measure completely different phenomena. Furthermore, the
sensors can be integrated in small, battery-powered sensor
nodes and require less computational power than, for example,
video-based systems.

Magnetometers are sensors measuring the strength of the
Earth’s magnetic field at a given point. They are often used in
compass applications, for example, in mobile phones. Metallic
objects like vehicles cause local distortions, and they can
be measured by a magnetometer and exploited for target
tracking [19]. Commonly, magnetometers are vector sensors
measuring the Cartesian components of the vector field. Ac-
celerometers are also used in a number of applications. An
accelerometer attached to the road surface measures vibrations
in the road caused by dynamic loads of vehicles passing in
its proximity. The features of the vibrations can be used to
estimate vehicle parameters.

When these sensors are used for tracking purposes, there are
several important issues that need to be addressed carefully.
First, the sensor measurements are highly nonlinear functions
of the states. Second, the measurements depend on a set
of unknown, target- or material-specific parameters which, if
included in the estimation problem, make the problem even
more challenging. Third, due to the different measurement
principles, the sensors have different properties including
different sampling rates and operating clocks that usually are
not synchronized.

The solutions to this type of problems require fusion of
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information from the sensors and multi-rate processing. A
methodology that is suitable for these problems is particle
filtering. Some solutions for generically similar settings have
been proposed in the literature. For example, a hybrid multi-
rate Kalman-particle filter was proposed in [20]. There, it was
assumed that the measurements for the faster sensor depend
linearly on the state and hence, a Kalman filter was used
to update the particles when only the linear measurement
were available. The method was also applied to a tracking
problem where velocity and range measurements were avail-
able. In [21], particle filtering with multi-rate sensors in a
process industry context was considered. Similarly, [22] in-
troduced multi-rate particle filtering in conjunction with robot
localization based on a set of different sensors. An unscented
information filter for estimating the position of a vehicle fusing
the measurements from a camera, laser range finder, and GPS
receiver was proposed in [23]. Finally, there is a large body of
work on vehicle tracking using particle filtering and different
types of sensors. For example, Yin et. al. propose to combine a
particle filter with the CamShift algorithm for vehicle tracking
using video in order to achieve scale-invariability and account
for disturbances such as occlusion and background clutter [24].
Another video-based method that is especially robust to partial
occlusion of the target was proposed in [25]. Finally, [26] also
uses particle filtering for video-based vehicle tracking where
particles are clustered by analyzing the motion coherence in
order to form convex shapes of the tracked objects.

The contributions of this paper are as follows. First, we
propose a multi-rate particle filtering method for vehicle
tracking fusing the measurements of two passive sensors,
a magnetometer and an accelerometer, where the measure-
ments are in general asynchronous. This is a novel approach
and has not been considered before. Second, the unknown
parameters in the sensor models are handled through Rao-
Blackwellization, simplifying the tracking problem and im-
proving the performance. With our simulation results, we show
that the proposed method can be used for implementing a low-
cost, high accuracy vehicle tracking sensor platform.

The remainder of this paper is organized as follows. The
problem is formulated in Section II and the particle filtering
algorithm is introduced in Section III. How the particle filter
can be applied to the problem is shown in Section IV. Finally,
simulation results are provided in Section V and concluding
remarks are given in Section VI.

II. PROBLEM FORMULATION

We formulate the problem by using a model describing the
vehicle motion along the road and two measurement models,
for the magnetometer and accelerometer, respectively. They
are described in turn below.

A. Motion Model

The vehicle is assumed to follow the course of the road,
which is a very constrained environment. Furthermore, since
the time window where the vehicle is in the vicinity of the
sensor is rather short (of magnitude 1 s . . . 2 s), it can be safely
assumed that the vehicle travels at a nearly constant speed.

Thus, the motion is represented by a simple one-dimensional
constant velocity motion model given by

xt =

[
1 Ts
0 1

]
︸ ︷︷ ︸

,A

xt−1 +

[
T 2
s

2
Ts

]
︸ ︷︷ ︸
,B

ut, (1)

where t = 1, 2, . . . , T is a discrete time index, Ts is the
sampling time,

xt =

[
rxt
ṙxt

]
, (2)

rxt is the position on the road, and ṙxt is the vehicle’s velocity.
The symbol ut can be interpreted as a random acceleration
term that accounts for small changes in the vehicles velocity
due to the drivers input, drag, and so on. It is a random variable
with a distribution given by

p(ut) = N (ut; 0, σ2
ut), (3)

where N (ut; 0, σ2
ut) signifies normal distribution of a scalar

with mean zero and variance σ2
ut .

The initial position of the vehicle is the point where the
vehicle is in the proximity of the sensor and where the
measurements start being taken. It is thus given through the
sensor range plus some uncertainty. Hence, it is modeled
according to

p(x0) = N (x0;µx0 , Cx0), (4)

where µx0 is the mean sensor range, Cx0 the spread, and

N (x0;µx0
, Cx0

) =
1

(2π)N/2|Cx0 |1/2

× e− 1
2 (x0−µx0 )

>C−1
x0

(x0−µx0 )
(5)

is the normal distribution of an N×1 random variable x0 with
mean µx0 and covariance Cx0 .

Finally, the position of the target is defined by the vector

rt =

rxtryt
rzt

 (6)

pointing from the sensor at the origin of the Cartesian coor-
dinate system to the target. The position rzt in the z-direction
is assumed to be rzt = 0, that is, it is assumed that the sensor
is in the same plane as the vehicle. Furthermore, the lateral
position ryt is assumed to be in the middle of the driving lane
adjacent to the sensor and hence known.

B. Magnetometer

The magnetic mass of the vehicle causes small local mag-
netic distortions in the earth’s magnetic field in the vicinity of
the vehicle which can be measured using a magnetometer [15],
[19]. It has been shown and verified [15] that the measured
magnetic field can be modeled by the static background field
B0 plus a series of dipoles with locations rp and magnetic
moments mp as

B = B0 +

P∑
p=1

3(r>p mp)rp − |rp|2mp

|rp|5
. (7)
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The model order P depends on the magnetic extension of
the vehicle as well as the distance between the vehicle and
the sensor. It has been shown [15] that a low model order
of P = 1 . . . 3 is sufficient for small- to mid-sized vehicles
passing the sensor at a reasonable distance. For simplicity, we
assume a single dipole (P = 1) here, however, the extension
to higher orders is straightforward. Furthermore, the static
background field B0 can be subtracted which finally yields
the measurement model

ym,t =
3(r>t m)rt − |rt|2m

|rt|5︸ ︷︷ ︸
,hm(xt)

+wm,t, (8)

where ym,t is a 3×1 vector containing the vector components
of the magnetic field, wm,t is the measurement noise with a
distribution given by

p(wm,t) = N (wm,t; 0, σ2
mI3), (9)

m is the so called magnetic dipole moment, a generally
unknown target specific parameter, and I3 is the 3×3 identity
matrix.

The bandwidth of the signal measured by the magnetometer
depends on a number of different factors such as the speed of
the passing vehicles and magnetic moment and is typically
lower than 100 Hz. Hence, here, the magnetometer is sampled
at a sampling rate of 200 Hz. In practice, this sampling rate
is supported by the sensors being evaluated for a prototype
system [27].

C. Accelerometer

Similarly, the interaction between the vehicle and the road
causes road surface waves that can be measured by an ac-
celerometer. It has been shown that the wave propagation
can be described as waves spreading circularly from the
source [28] with transfer function

G(ω) = A(ω)H(1)
0 (−k(ω)|r|) (10)

where A(ω) is a material parameter and k(ω) the complex
wavenumber. H(1)

0 (x) is the Hankel function of the first kind
of order zero [29].

Furthermore, a common approach in tracking is to model
the source as a random process [30], which is also used here.
Hence, the input is described by the random variable

vt ∼ N (0, 1). (11)

Together with a narrow-band approximation and describing
each axle of a vehicle as an individual source, the measurement
model for a two-axled vehicle becomes (see [31] for a detailed
derivation)

ya,t = κi
(
H(1)

0 (iη|r1,t|) +H(1)
0 (iη|r2,t|)

)
︸ ︷︷ ︸

,ha(xt)

vt + wa,t, (12)

where i =
√
−1, κ = |A| and η = Im(k) are material

parameters, which in general are unknown (they may be slowly

varying due to seasonal influences). wa,t is measurement noise
with

p(wa,t) = N (wa,t; 0, σ2
a), (13)

The location of the two axles is described by the two vectors
pointing at the center of each axle given by

r1,t = rt +

l/20
0

 and r2,t = rt −

l/20
0

 , (14)

and l is the wheelbase which is approximately 2.5 m for
passenger cars and is hence assumed known [32].

The bandwidth of the road surface waves depends mainly on
the material parameters of the road which in turn can depend
on location and climate. It has been indicated that a bandwidth
of 1 kHz should be sufficient for year-round operation [28]
and hence, the sampling rate for the accelerometer is chosen
to be 2 kHz. This is again supported by the sensor under
consideration [33].

III. PARTICLE FILTERING

Particle filters are well-suited for state estimation of non-
linear, dynamic systems such as the one introduced in Sec-
tion II [34], [35]. Here, we first describe the particle filter as
a state estimator as known from the literature [34], [35] and
then we show a way of extending the filter for using it in
multi-rate sensor scenarios.

A. Sampling Importance Resampling Particle Filter

Assume that the dynamic system of interest is described by

xt = f(xt−1, ut) (15a)
yt = h(xt, wt), (15b)

where t = 1, . . . , T , xt is a dx × 1 state vector, yt a dy × 1
measurement vector, ut and wt are process and measurement
noises, respectively, and the initial state is x0 ∼ p(x0), with
p(x0) being the prior distribution of x0. It is well known
that a closed form solution for the filtering density p(xt|y1:t)
only exists for special cases of (15), for example when the
probability density functions are Gaussian and the system is
linear.

For other cases, one has to resort to approximating method-
ologies. One of them is particle filtering [34], [35], which is
also the approach that we adopt in this work. With particle
filtering, we approximate the distributions of interests with
particles, x(m)

t , and their associated weights, w(m)
t , where m

is the index of a particle and its weight. Each particle can be
interpreted as a candidate value of the state of the system while
its corresponding weight can be interpreted as the probability
of that value. Finally, note that the weights themselves sum
up to one.

A particle filtering method has three steps, (a) particle
generation (propagation), (b) weight computation, and (c)
resampling. The last step is necessary to avoid degeneracy
of the discrete representation of the target distribution. With
reampling, the particles with low weights are removed and
the ones with large weights are replicated. The removal and
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replication is conducted in random fashion according to the
weights of the particles.

There are many different particle filtering methods available
in the literature but the original one goes under the name
sequential importance resampling (SIR) [36], and it is the
method we use in this paper. For completeness, the SIR
particle filtering algorithm as it was introduced in [36] is
summarized in Algorithm 1.

Algorithm 1 (SIR Particle Filter).

1) Set t ← 0 and initialize x(m)
0 ∼ p(x0), w(m)

0 = 1/M
for m = 1, . . . ,M .

2) Set t← t+ 1; continue if t ≤ T , otherwise terminate.
3) Propagate the particles,

x
(m)
t ∼ p

(
xt|x(m)

t−1

)
.

4) Calculate the non-normalized weights

w̃
(m)
t = w

(m)
t p

(
yt|x(m)

t

)
.

5) Normalize the weights

w
(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

.

6) If
(∑M

m=1

(
w

(m)
t

)2)−1
< MT resample with re-

placement such that P (xt = x
(m)
t ) = w

(m)
t and set

w
(m)
t = 1/M .

7) Roughen the particles according to (16)-(17).
8) Return to step 2.

In this algorithm M is the size of the particle set and MT

is a positive number less than M . In step 6 we decide if
resampling should take place or not. If the “effective sample
size” of the particle set (expression on the left of the inequality
in step 6) is less than the preselected value MT , resampling
is performed. Finally, step 7 is a standard trick to mitigate
sample impoverishment [36]. It improves sample diversity by
adding an additional jitter to the particles which reduces the
effects of the dependency introduced by the resampling step.
The roughening is performed by adding an independent jitter
c to each particle x(m)

t where

c ∼ N (0,Σ). (16)

Σ is a diagonal covariance matrix with elements

[Σ]i = (KEM−1/dx)2 (17)

where K is a tuning parameter and E is the difference
between the largest and smallest values of all particles in
direction i. By choosing the covariance as given in (17), the
standard deviation is normalized such that the roughening
is proportional (with proportionality K) to the distance E
(see [36] for details).

B. Multi-rate SIR Particle Filter

Now, instead of having a single sensor assume that the
system is measured by L different sensors at L different
sampling rates fs,l for l = 1, . . . , L. Hence, we can not
use Algorithm 1 directly and have to extend it in order to
accommodate the different sampling rates.

First, assume that the ratios

Rl =
fs,max
fs,l

(18)

are integers where fs,max is the highest sampling frequency.
(This assumption is made for ease of presentation. Particle
filters can handle measurements from sensors acquired with
any relationship between the sampling frequencies [37].) The
measured signals can then be represented by

y1,R1t = h1(xR1t, wR1t),

y2,R2t = h2(xR2t, wR2t),

...
yL,RLt = hL(xRLt, wRLt),

(19)

where Rlt denotes that the sample of the lth sensor is
measured only at time instants Rlt (relative to the fastest
sensor which has samples at t = 1, 2, . . . , T ). Furthermore,
a reasonable assumption is that the measurement noises wRlt
and wRkt are uncorrelated, that is,

E{wRltwRkt} = 0 for l 6= k. (20)

Without loss of generality, assume that we are given the
measurements of two sensors (L = 2) with R1 = 1 and R2 =
2. Hence, at t odd, both sensors provide new measurements
whereas at t even, only sensor 1 provides new data. Then, at
any even time instant t1, the posterior can be expressed as

p(xt1 |y1,1:t1 , y2,1:2:t1−1)

∝ p(y1,t1 |xt1) p(xt1 |y1,1:t1−1, y2,1:2:t1−1),
(21)

where ∝ stands for “proportional to,”

yl,1:Rl:t =
[
yl,1 yl,Rl+1 . . . yl,t

]>
, (22)

and
p(y1,t1 |xt1) (23)

is the likelihood.
On the other hand, for t1 + 1 we have new measurements

from both sensors; hence

p(xt1+1|y1,1:t1+1, y2,1:2:t1+1)

∝ p(y1,t1+1, y2,t1+1|xt1+1) p(xt1+1|y1,1:t1 , y2,1:2:t1−1).
(24)

Furthermore, given the independence (20) of y1,t1+1 and
y2,t1+1, the likelihood can be factorized as

p(y1,t1+1, y2,t1+1|xt1+1) =p(y1,t1+1|xt1+1)

× p(y2,t1+1|xt1+1),
(25)

which now directly leads to the multi-rate particle filter as
follows.

First, note that the particle weights are calculated using
p(yt|xt) in step 4 of Algorithm 1. Hence, in the above case,
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we would simply use the likelihood (23) for calculating the
particle weights when t is even and (25) for t odd.

The generalization to an arbitrary number of sensors is
straightforward. At any given time t, sensor l delivers a
new measurement if the remainder of the integer division of
t − 1 and Rl is 0 (note that all the sensors start acquiring
measurements at t = 1). That is, if

t− 1−Rl
⌊
t− 1

Rl

⌋
= 0, (26)

the lth sensor will produce a measurement at t. Then, we can
define the non-normalized weight w̃(m)

t,l for the particle x(m)
t

from the measurement of sensor l as

w̃
(m)
t,l =

{
p
(
yl,t|x(m)

t

)
, if t = Rl

⌊
t−1
Rl

⌋
+ 1

1, otherwise
(27)

and the overall non-normalized weight w̃(m)
t becomes

w̃
(m)
t = w

(m)
t−1

L∏
l=1

w̃
(m)
t,l . (28)

Modifying step 4 in Algorithm 1 with (27)-(28) finally leads
to the multi-rate particle filter as summarized in Algorithm 2.

Algorithm 2 (Multi-rate SIR Particle Filter).
1) Set t ← 0 and initialize x(m)

0 ∼ p(x0), w(m)
0 = 1/M

for m = 1, . . . ,M .
2) Set t← t+ 1; continue if t ≤ T , otherwise terminate.
3) Propagate the particles,

x
(m)
t ∼ p

(
xt|x(m)

t−1

)
.

4) Calculate the non-normalized weights
a) For each l = 1, . . . , L, calculate the individual

particle weights w̃(m)
t,l according to (27).

b) Calculate the total non-normalized particle weight
w̃

(m)
t according to (28).

5) Normalize the weights

w
(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

.

6) If
(∑M

m=1

(
w

(m)
t

)2)−1
< MT resample with re-

placement such that P (xt = x
(m)
t ) = w

(m)
t and set

w
(m)
t = 1/M .

7) Roughen the particles according to (16)-(17).
8) Return to step 2.

When the measurements of the different sensors are fully
asynchronous, they are processed as soon as they arrive. For
example, let the latest time instant with a measurement be t1
and the next measurement be obtained at t2 > t1. Then one
generates the particles for t2 by

x
(m)
t2 ∼ p(xt2 |x(m)

t1 ) (29)

and their non-normalized weights are computed by

w̃
(m)
t2 = w

(m)
t1 p(yt2 |x(m)

t2 ). (30)

IV. PROPOSED METHOD

Given the problem formulation in Section II and the particle
filtering algorithms in Section III, it is now shown how the
latter is applied for vehicle tracking. In the following, there are
two subsections. In the first, we show how to apply the particle
filter to the problem as formulated directly, assuming known
parameters. In the second, we present how the problem can
be dealt with when the parameters of the model are unknown.

A. Known Parameters

Assuming that all the parameters in the measurement mod-
els (8) and (12) are known, it is easy to apply the particle
filter. The system is completely defined by (1), (8), and (12)
and hence, the predictive density and likelihoods are given by

p(xt+1|xt) = N
(
xt+1;Axt, σ

2
utBB

>) , (31a)

p(ym,t|xt) = N
(
ym,t;hm(xt), σ

2
mI3

)
, (31b)

p(ya,t|xt) = N
(
ya,t; 0, ha(xt)

2 + σ2
a

)
, (31c)

and thus, applying the particle filter is straightforward.

B. Unknown Parameters

A more realistic scenario dictates that neither the parameters
of the measurement function nor the noise characteristics are
known. Taking this into account, a straightforward solution
would be to also include these parameters in the estimation
problem. However, these parameters are often not of interest
and what is more, they would unnecessarily also increase the
dimension of the problem. Instead, the nuisance parameters
can be modeled as unknowns with a prior distribution p(θ).
This has the advantage that one is then able to use Rao-
Blackwellization (also called marginalization) in order to
integrate out the unknown parameters analytically [38]. Rao-
Blackwellization can be thought of as weighted averaging over
all the possible values of the parameters, where the probability
density function of the parameters is the weighting function.
The advantages of this approach are that the dimension of
spaces where particles have to be generated is reduced and that
the method does not have to deal with constant parameters,
which in particle filtering require special treatment. All this
entails more accurate and robust tracking. The implementation
of the Rao-Blackwellization requires use of hyperparameters
for the priors of the unknown parameters. It turns out that that
the methods are quite robust against the assumed values of
these parameters. The likelihoods quickly overtake the priors
defined by these hyperparameters and the posterior accurately
points to parts of its support where the true values of the
unknown parameters might be. Next, we explain how we
implement Rao-Blackwellization on both, the magnetometer
and accelerometer measurements.

1) Magnetometer: The 3 × 1 magnetic moment m in (8)
is generally unknown. By assigning a prior distribution to m,
it can be marginalized out so that the measurement becomes
independent of m. First, note that hm(xt) can be rewritten as

hm(xt) =
3(r>t m)rt − |rt|2m

|rt|5
=

3rtr
>
t − |rt|2I3
|rt|5︸ ︷︷ ︸
,Hm

m. (32)
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Second, it is assumed that the prior of m conditioned on
σ2
m is given by

p(m|σ2
m) = N (m;µm, σ

2
mKm), (33)

which is the conjugate prior for (31b) and Km is a 3 × 3
matrix. Then, the marginalized distribution becomes

p(ym,t|xt, σ2
m) =

∫ ∞
−∞

p(ym,t|xt, σ2
m,m)p(m|σ2

m) dm

=

∫ ∞
−∞
N
(
ym,t;Hmm,σ

2
m

)
×N

(
m;µm, σ

2
mKm

)
dm

= N
(
ym,t;Hmµm, σ

2
m(I3 +HmKmH

>
m)
)
.

(34)

The last equality in (34) is due to a well-known property of
Gaussian random variables [39].

The second unknown is the noise variance σ2
m. The inverse

Gamma distribution defined as

IG(x;α, β) =
βα

Γ(α)
x−α−1e−

β
x (35)

is known to be the conjugate prior for the unknown variance
of a Gaussian random variable [38]. We assign it as a prior to
σ2
m, that is,

p(σ2
m) = IG(σ2

m;αm, βm). (36)

Upon marginalizing σ2
m (see Appendix), we obtain

p(ym,t|xt) =
∫∞
−∞ p(yt|xt, σ2

m)p(σ2
m)dσ2

m

= t
(
ym,t; 2αm, Hmµm,

βm(I3+HmKmH
>
m)

αm

)
,

(37)

where t(x; ν, µ, C) is the multivariate t-distribution with ν
degrees of freedom given by

t(x; ν, µ, C) =
Γ
(
ν+n
2

)
πn/2νn/2Γ(ν/2)|C|1/2

×
(

1 +
(x− µ)>C−1(x− µ)

ν

)− ν+n2
,

(38)

and where x is of dimension n× 1, µ is the mean of x, and
C is an n× n positive definite scale matrix.

2) Accelerometer: Similar to the magnetometer, the ac-
celerometer measurement model depends on a set of unknown
parameters, see (12). Starting from

p(ya,t|xt, κ, η, vt, σ2
a) = N (ya,t;ha(xt)vt, σ

2
a), (39)

which follows directly from (12), we note that

ha(xt)vt = κ i
(
H(1)

0 (iη|r1,t|) +H(1)
0 (iη|r2,t|)

)
︸ ︷︷ ︸

,Ha

vt (40)

is linear in κ. After assigning a conjugate prior conditioned
on σ2

a and vt, i.e.,

p(κ|σ2
a, vt) = N

(
κ;µκ;

kκσ
2
a

v2t

)
, (41)

where kκ is a positive hyperparameter, we marginalize with
respect to κ and obtain

p(ya,t|xt, η, vt, σ2
a) =

∫ ∞
−∞

p(ya,t|xt, κ, η, vt, σ2
a)

× p(κ|σ2
a, vt)dκ

=

∫ ∞
−∞
N
(
ya,t;κHavt, σ

2
a

)
×N

(
κ;µκ;

kκσ
2
a

v2t

)
dκ

= N
(
ya,t;µκHavt, σ

2
a(1 + kκHa

2)
)
.

(42)

Next, the unknown measurement noise variance can be
marginalized by assuming again an inverse Gamma prior,

p(σ2
a) = IG(σ2

a;αa, βa). (43)

Marginalization then yields a t-distribution, similar to (37),
that is,

p(ya,t|xt, η, vt) =

∫ ∞
−∞

p(ya,t|xt, η, vt, σ2
a)p(σ2

a)dσ2
a

= t

(
ya,t; 2αa, µκHavt,

βa(1 + kκH
2
a)

αa

)
.

(44)

Furthermore, it is given that vt ∼ N (0, 1). Unfortunately,
marginalization with respect to vt cannot be used directly
in (44). However, p(ya,t|xt, η, vt) can be approximated by a
Gaussian distribution as

p(ya,t|xt, η, vt) ≈ N
(
ya,t;µκHavt, β(1 + kκH

2
a)
)
, (45)

and then, marginalization yields

p(ya,t|xt, η) ≈
∫ ∞
−∞

p(ya,t|xt, η, vt)p(vt)dvt

=

∫ ∞
−∞
N
(
yat ;µκHavt, β(1 + kκH

2
a)
)

×N (vt; 0, 1)dvt

= N
(
ya,t; 0, β(1 + kκH

2
a) + µ2

κH
2
a

)
.

(46)

The last unknown parameter η appears as an argument to
the Hankel function H(1)

0 (x) in (12). It is thus impossible to
analytically marginalize with respect to it and hence, it has
to be taken care of in a different way. One straightforward
approach is to augment the state vector with the unknown
parameter as

x̃t =

[
xt
η

]
(47)

which leads to the augmented process

x̃t =

1 Ts 0
0 1 0
0 0 1


︸ ︷︷ ︸

,Ã

x̃t−1 +

T 2
s

2
Ts
0


︸ ︷︷ ︸
,B̃

ut (48)

with prior
p(η) = N (η;µη, σ

2
η) (49)

which is used to propose samples at t = 1.
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3) Summary: Finally, the system where the unknown
parameters have been addressed is defined by (37), (46),
and (48). This leads to the predictive density and likelihoods
defined by

p(x̃t+1|x̃t) = N
(
x̃t+1; Ãx̃t, σ

2
utB̃B̃

>
)
, (50a)

p(ym,t|x̃t) = t

(
ym,t; 2αm, Hmµm,

βm(I3 +HmKmH
>
m)

αm

)
,

(50b)

p(ya,t|x̃t) ≈ N
(
ya,t; 0, βa(1 + kκH

2
a) + µ2

κH
2
a

)
, (50c)

where αm, βm, Km, βa, kκ, and µκ are hyperparameters.

V. NUMERICAL ILLUSTRATION

In this section we demonstrate the performance of the
proposed tracking method by computer simulations using the
models introduced in Section II. We considered five different
scenarios. First, the multi-rate particle filter was run with
known parameters in order to show that the approach is
feasible. Second, the marginalized particle filter was simu-
lated and its performance analyzed. Third, two consecutively
passing vehicles, one fast and one slower, were simulated.
Fourth, we analyze the sensitivity of the proposed method to
hyperparameters. Fifth, we compared the method of fusing
the sensors using particle filtering to particle filters for the
individual sensors only, a particle filter fusing both sensors
but not using multi-rate processing, and the standard unscented
Kalman filter (UKF) [40]. In each setup, a total of 100 Monte
Carlo (MC) simulations were executed to evaluate the average
performance.

The hyperparameters for the magnetometer were set as

µm =

1
1
1

 , and Km = I3,

and the parameters of the magnetometer measurement noise
were

σ2
m,0 = 1× 10−5, αm = 6, and βm = σ2

m,0(αm − 1).

Furthermore, for the constanst κ and η of the accelerometer,
the hyperparameters were

µκ = 100, and kκ = 1,

and
µη = 4, and σ2

η = 1,

respectively. For the accelerometer measurement noise, we
used

σ2
a,0 = 1× 10−8, αa = 6, and βa = σ2

a,0(αa − 1).

The choice of these parameters yields typical signal- and noise
levels encountered in commercially available sensors.

In all the cases, the initial distribution for the particles was
chosen as Gaussian with mean and covariance given by

µx0
=

[
−10
15

]
and Cx0

=

[
10 0
0 100

]
.

In all the simulations, we used M = 1,000 particles.

0 200 400 600 800 1,000
−2
−1
0

1

2

t

y m
,t
/

µT

yx
m,t

yy
m,t

yz
m,t

(a)

0 200 400 600 800 1,000

−2

0

2

×10−2

t

y a
,t
/

m
/s
2

(b)

Fig. 1. Simulated measurement signals. (a) Magnetometer signal and (b)
accelerometer signal.

A. Known Parameters

First, we show how the multi-rate particle filter performs
when all the model parameters are known, that is, by using the
model summarized in (31). Samples of simulated measurement
signals of the magnetometer and accelerometer are displayed
in Fig. 1. We obtained all the results with the assumption that
the vehicle started at rx0 = −5 m with ṙx0 = 20 m/s.

In the case of known parameters, we expected good per-
formance because there were no uncertainties about them.
Figure 2 shows the mean error of the estimated states from
the 100 simulations (solid line). We see that both states con-
verge quickly from the initial offset (due to the initialization)
toward zero. Further, the 2σ-bounds (marked with dotted
lines) indicate that even the uncertainty about the estimated
states converges quickly as the vehicle approaches and passes
the sensor. Finally, it is also worth pointing out the initial
behavior of the filter (up to t ≈ 200). While the position
error converged almost immediately, the speed estimation error
converged somewhat more slowly as the target approached the
sensor which is due to the fact that the speed is not observed
through the measurement directly.

B. Unknown Parameters

In Fig. 3, we show the results for the same scenario as in
the previous section, however in this case the parameters are
assumed unknown. The results were obtained by using the
model (50). The mean of the state estimation error in Fig. 3
suggests that even in this case, both the position and speed
error converged towards zero for the multi-rate particle filter.
However, note that the uncertainty (dotted line) is larger as
compared to the the case where the parameters were known.
This can be attributed to the increased uncertainty in the
likelihood caused by the marginalization.
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Fig. 2. Mean estimation error with known parameters. (a) Position and (b)
speed.
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Fig. 3. Mean estimation error with unknown parameters. (a) Position and (b)
speed.

C. Two Vehicles

Fig. 4 illustrates the measurement signal for two vehicles
passing by the sensors one after another. The first vehicle
passed the sensor with an initial speed of ṙx0 = 20 m/s while
the second vehicle passed with ṙx0 = 10 m/s. The two vehicles
started at rx0 = −5 m. The particle filter was initialized
whenever a vehicle was detected in front of the sensor using
the magnetometer (vehicle detection using magnetometers
has been shown to be reliable and rather simple, see, for
example [41]). Again, 100 MC simulations were run.

The results of the mean estimation error are presented in

0 500 1,000 1,500 2,000 2,500 3,000
−2
−1
0

1

2

t

y m
,t
/

µT

yx
m,t

yy
m,t

yz
m,t

(a)

0 500 1,000 1,500 2,000 2,500 3,000

−2

0

2

×10−2

t

y a
,t
/

m
/s
2

(b)

Fig. 4. Simulated measurement signals for two consecutive vehicles. (a)
Magnetometer signal and (b) accelerometer signal.

0 500 1,000 1,500 2,000 2,500 3,000
−1
−0.5

0

0.5

1

t

E
{r̂

x t
−

rx t
}
/

m

(a)

0 500 1,000 1,500 2,000 2,500 3,000
−10
−5
0

5

10

t

E
{ˆ̇ r

x t
−
ṙx t
}
/

m
/s

(b)

Fig. 5. Mean estimation error for two vehicles following each other. (a)
Position and (b) speed.

Fig. 5 (solid lines) together with the 2σ-bounds (dotted lines).
First, note how the particle filter was only activated whenever
a vehicle was present. Here this was the case from t ≈ 100 to
t ≈ 900 for the first vehicle and from t ≈ 1,500 to t ≈ 2,600
for the second vehicle. For both vehicles, the position error of
the multi-rate filter converged to zero very quickly (Fig. 5a),
whereas the speed error converged more slowly (Fig. 5b), as
was the case in the experiment with a single vehicle. This is
especially pronounced for the second, slower vehicle.
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TABLE I
PARAMETERS FOR THE HYPERPARAMETER SENSITIVITY ANALYSIS.

Case m µm Km

a)
[
1 1 1

]T [
1 1 1

]T
I3

b)
[
1 1 1

]T [
1 1 1

]T
1× 105I3

c)
[
2 2 2

]T [
1 1 1

]T
I3

d)
[
2 2 2

]T [
1 1 1

]T
1× 105I3

0 200 400 600 800 1,000
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−0.5

0

0.5
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(a)
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−10
−5
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10
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/s a)

b)
c)
d)

(b)

Fig. 6. Examples of the proposed method using different hyperparameters. (a)
Position and (b) speed.

D. Sensitivity to Hyperparameters

The proposed method heavily relies on Rao-
Blackwellization, which involves analytical integration
of some of the unknown parameters. Rao-Blackwellization
requires the use of prior distributions of the parameters to
be integrated, and these priors are in turn defined by their
own parameters (hyperparameters). Hence, in this section, the
sensitivity of the method to the hyperparameters introduced
through the priors is illustrated. For this purpose, a single
vehicle passage with varying true- and hyperparameters is
considered. The combinations of the different parameters are
given in Table I.

The results are shown in Fig. 6. If the location hyperpa-
rameter µm is close to the true value of m, the performance
does not vary much depending on the prior variance-related
parameter Km, see cases a) and b). However, it can be seen
that choosing µm significantly different from the true value of
m can lead to deteriorated performance, see case c). This effect
can be mitigated by instead increasing the hyperparameter Km

and thereby increasing the prior variance (case d), see (33)).
We note that an increased prior variance entails less reliance
on the prior and more on the likelihood, which is why the
results of case d) are better than the ones of case c).

0 200 400 600 800 1,000
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x t
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/

m Fusion
Acc.
Mag.

(a)

0 200 400 600 800 1,000

100

102

t

R
M

SE
(ˆ̇ r

x t
)
/

m
/s Fusion

Acc.
Mag.

(b)

Fig. 7. Comparison of the multi-rate particle filter and individual particle
filters for each sensor. RMSE for (a) the position and (b) the speed.

E. Comparison to Other Filters

In order to further illustrate the performance of the proposed
method, it is compared to individual particle filters for each of
the sensors first. Again, a single passage of a vehicle and 100
Monte Carlo simulations using the setup mentioned above are
considered. As a measure of comparison, the root mean square
error (RMSE) of the individual states over the 100 simulations
was chosen.

Figure 7 illustrates the obtained results. It can be seen
that the filter fusing both measurements (solid line) has the
lowest RMSE for both states, the position (Fig. 7a) and speed
(Fig. 7b). The filter only using the magnetometer (dashed line)
performs as well as the fusion filter initially but does not attain
as low errors once the vehicle is in front of the sensor around
t ≈ 500. Finally, the filter only using the accelerometer (dotted
line) performs considerably worse than both other filters.

As mentioned above, popular alternatives to state estimation
in nonlinear systems using particle filtering includes different
non-linear Kalman filters such as the extended Kalman filter
(EKF) or the UKF [40]. It is generally believed, that the
UKF is superior to the EKF and hence, the particle filter is
compared to the UKF here. For comparison, we employed
an UKF that uses multi-rate fusion of the data just as the
proposed particle filter. This is achieved by calculating the time
and measurement updates by simply using all the available
measurements for any given t. Additionally, the proposed
method is also compared to a particle filter fusing the two
sensors where both sensors are sampled at the same sampling
frequency.

The results of this comparison are shown in Fig. 8. Even
though the UKF (dashed) initially converges, it has difficulties
to actually track the vehicle which is reflected in increased
RMSE around t ≈ 250 for both, the position and speed. The
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Fig. 8. Comparison of fusion using the multi-rate particle filter, a regular
particle filter, and an unscented Kalman filter. RMSE for (a) the position
and (b) the speed.

time at which this happens coincides with the time where the
vehicle enters the range of the sensor (see Fig. 1). Closer
inspection of the results revealed that the UKF is not able
to run on the accelerometer measurements only (in between
the magnetometer sampling instants) which eventually leads
to divergence. By contrast, both particle filters are able to do
it, and therefore, they clearly outperform the UKF. Hence, the
additional complexity of the particle filter results in a gain in
performance. Comparing the multi-rate particle filter to the
regular particle filter (dotted), we can see that the regular
particle filter performs better. This is not surprising since it
can make use of data which is unavailable to the multi-rate
particle filter.

F. Discussion

The above simulations show that the multi-rate particle filter
performed well. It successfully tracks the vehicle with low
uncertainty. As expected, it yielded best results because it pro-
cesses information from the two sensors in comparison to the
particle filters that rely on single sensors only. The reason this
is not a surprising result is because the statistical information
from the sensors is additive, that is, more measurements lead
to more accurate estimates.

Furthermore, the simulations indicate that even though some
parameters of the model are unknown, they can be treated by
Rao-Blackwellization. The results suggest that the error for
the proposed multi-rate algorithm was of the same magnitude
as in the case where the parameters were assumed known.
It was also shown that the choice of the hyperparameters
affect the method in the sense that poorly chosen parameters
can lead to deteriorated performance. In practice, one often
has insight in the system and can calibrate the parameters

accordingly. This can, for example, be achieved by gathering
enough measurement data and building the appropriate prior
and using empirical Bayes methods, see [42].

In summary, it is apparent that tracking should be done
by using both sensors. It is important to point out that the
multi-rate particle filter does not require equal sampling rates
or synchronized sampling by the two sensors. These sensors
can provide samples according to their sampling rates. This,
in general, allows for conservation of energy and reduction of
necessary computations.

It is also worth mentioning scenarios where the proposed
method has difficulties to accurately track vehicles. This
mostly happens when the single-target assumption is violated.
Typical examples when this occurs are vehicles crossing in
front of the sensor or vehicles following each other very
closely. In order to accommodate such scenarios, the target
model has to be extended to account for the additional vehicle.

Finally, note that the simulations are conducted using the
models introduced in Section II. Since there is no model
mismatch between the developed estimator and the simulation
setup, the numerical illustrations do not provide inaccuracies
due to any mismatches between reality and the assumed
models. We would like to point out that the model for the
magnetometer measurements has been verified (see, for ex-
ample, [15]) whereas the one for accelerometer measurements
is still under way. If it turns out that the accelerometer model
should be significantly different, the particle filtering method
proposed in this paper can be straightforwardly modified.

VI. CONCLUSION

In this paper we addressed the problem of vehicle tracking
based on multi-rate particle filtering that fuses measurements
from two different sensors. The sensors are an accelerometer
and a magnetometer and they operate with different sampling
rates. The measurement models include unknown parameters,
and we handle them by using Rao-Blackwellization. The
results indicate that the proposed approach is feasible. As
expected, better results for the state estimates were obtained
when the multi-rate particle filter used the measurements of
both sensors as opposed to using measurements of each sensor
individually. Furthermore, the performance of the filter when
the parameters of the models were assumed unknown was very
close to that of the filter that knew the correct values of the
parameters.

APPENDIX

In order to find the marginalized distribution for p(ym,t|xt),
where σ2

m has been eliminated, we start from the likeli-
hood (34) given by

p(ym,t|xt, σ2
m) = N

(
ym,t;Hmµm, σ

2
m(I3 +HmKmH

>
m)
)
,

and the prior distribution

p(σ2
m) =

βαmm
Γ(αm)

(
σ2
m

)−αm−1
e
− βm
σ2m .



11

Then, the marginalized likelihood is given by

p(ym,t|xt) =

∫ ∞
−∞

p(ym,t|xt, σ2
m)p(σ2

m)dσ2
m

=

∫ ∞
−∞

1

(2π)3/2(σ2
m)3/2|I3 +HmKmH>m|1/2

× e−
1

2σ2m
(ym,t−Hmµm)>(I3+HmKmH

>
m)−1(ym,t−Hmµm)

× βαmm
Γ(αm)

(
σ2
m

)−αm−1
e
− βm
σ2m dσ2

m

=
βαmm

(2π)3/2Γ(αm)|I3 +HmKmH>m|1/2

×
∫ ∞
0

1

(σ2
m)

2αm+5
2

e
− K
σ2m dσ2

m,

where

K = (ym,t−Hmµm)>(I3+HmKmH
>
m)−1(ym,t−Hmµm)+β.

Using integration by substitution with

γ =
K

σ2
m

dσ2
m = − (σ2

m)2

K
dγ

yields for the integral∫ ∞
0

1

(σ2
m)

2αm+5
2

e
− K
σ2m dσ2

m =

∫ ∞
0

1

K(σ2
m)

2αm+1
2

e−γdγ

=
1

K

∫ ∞
0

(
K

K

) 2αm+1
2 1

(σ2
m)

2αm+1
2

e−γdγ

=
1

K
2αm+3

2

∫ ∞
0

(
K

σ2
m

) 2αm+1
2

e−γdγ

= K−
2αm+3

2

∫ ∞
0

γ
2αm+3

2 e−γdγ

= K−
2αm+3

2 Γ

(
2αm + 3

2

)
.

By resubstituting K and rearranging, we finally obtain

p(ym,t|xt) =
Γ
(
2αm+3

2

)
(2π)3/2β3/2Γ(αm)|I3 +HmKmH>m|1/2

×
(

(y −Hmµm)>(I3 +HmKmH
>
m)−1(y −Hmµm)

2β

+ 1

)− 2αm+3
2

= t

(
ym,t; 2αm, Hmµm,

βm(I3 +HmKmH
>
m)

αm

)
,

which is the multivariate t-distribution with shape param-
eter 2αm, location Hmµm, and scale matrix βm(I3 +
HmKmH

>
m)/αm.
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[35] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Mı́guez, “Particle filtering,” IEEE Signal Processing
Magazine, vol. 20, no. 5, pp. 19–38, 2003.

[36] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F,
vol. 140, no. 2, pp. 107–113, 1993.

[37] L. Geng, M. F. Bugallo, A. Athalye, and P. M. Djurić, “Indoor tracking
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Associate with the Vinča Institute of Nuclear Sci-

ences, Belgrade. His research has been in the area of signal and information
processing with primary interests in the theory of signal modeling, detection,
and estimation; Monte Carlo-based methods; signal processing over networks;
and applications of the theory in a wide range of disciplines. He has been
invited to lecture at many universities in the United States and overseas.
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